
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=uaai20

Applied Artificial Intelligence
An International Journal

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/uaai20

Comparative Investigation of Learning Algorithms
for Image Classification with Small Dataset

Imran Iqbal, Gbenga Abiodun Odesanmi, Jianxiang Wang & Li Liu

To cite this article: Imran Iqbal, Gbenga Abiodun Odesanmi, Jianxiang Wang & Li Liu (2021)
Comparative Investigation of Learning Algorithms for Image Classification with Small Dataset,
Applied Artificial Intelligence, 35:10, 697-716, DOI: 10.1080/08839514.2021.1922841

To link to this article: https://doi.org/10.1080/08839514.2021.1922841

Published online: 19 Jun 2021.

Submit your article to this journal

Article views: 791

View related articles

View Crossmark data

Citing articles: 2 View citing articles

https://www.tandfonline.com/action/journalInformation?journalCode=uaai20
https://www.tandfonline.com/loi/uaai20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/08839514.2021.1922841
https://doi.org/10.1080/08839514.2021.1922841
https://www.tandfonline.com/action/authorSubmission?journalCode=uaai20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=uaai20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/08839514.2021.1922841
https://www.tandfonline.com/doi/mlt/10.1080/08839514.2021.1922841
http://crossmark.crossref.org/dialog/?doi=10.1080/08839514.2021.1922841&domain=pdf&date_stamp=2021-06-19
http://crossmark.crossref.org/dialog/?doi=10.1080/08839514.2021.1922841&domain=pdf&date_stamp=2021-06-19
https://www.tandfonline.com/doi/citedby/10.1080/08839514.2021.1922841#tabModule
https://www.tandfonline.com/doi/citedby/10.1080/08839514.2021.1922841#tabModule

Comparative Investigation of Learning Algorithms for
Image Classification with Small Dataset
Imran Iqbal a, Gbenga Abiodun Odesanmib, Jianxiang Wangc, and Li Liud

aDepartment of Information and Computational Sciences, School of Mathematical Sciences and LMAM,
Peking University, Beijing, China; bRobotics Research Group, College of Engineering, Peking University,
Beijing, China; cDepartment of Mechanics and Engineering Science, College of Engineering, Peking
University, Beijing, China; dCenter of Excellence for Intelligent Robotics, Department of Mechanics and
Engineering Science, College of Engineering, Peking University, Beijing, China

ABSTRACT
Increase in popularity of deep learning in various research areas
leads to use it in resolving image classification problems. The
objective of this research is to compare and to find learning
algorithms which perform better for image classification task
with small dataset. We have also tuned the hyperparameters
associated with optimizers and models to improve perfor-
mance. First, we performed several experiments using eight
learning algorithms to come closer to optimal values of hyper-
parameters. Then, we executed twenty-four final experiments
with near optimum values of hyperparameters to find the best
learning algorithm. Experimental results showed that the
AdaGrad learning algorithm achieves better accuracy, lesser
training time, as well as fewer memory utilization compared to
the rest of the learning algorithms.

Introduction

Machine learning is a subfield of computer science that provides ability to
electronic devices to learn automatically and improve their performance with-
out being programmed with any task-specific rules. Arthur Samuel in 1952
made the first learning code game of checkers (Samuel 1959). Deep learning is
subclass of machine learning. We typically say it “Deep” when we have more
than two layers in network otherwise it is called “Shallow” learning. The study
of deep learning started in 1940s (Mcculloch and Pitts 1943) when McCulloch
introduce the ideas immanent in nervous activity using calculus. Using mas-
sive datasets in deep networks achieved better performance for image recogni-
tion (LeCun et al. 1998), video classification (Karpathy et al. 2014), natural
language processing (Collobert and Weston 2008), and speech recognition
(Hinton et al. 2012) tasks.

CONTATCT Li Liu liuli@coe.pku.edu.cn; Imran Iqbal imraniqbalrajput@pku.edu.cn Center of Excellence
for Intelligent Robotics, Department of Mechanics and Engineering Science, College of Engineering, Peking
University, Beijing 100871, China

APPLIED ARTIFICIAL INTELLIGENCE
2021, VOL. 35, NO. 10, 697–716
https://doi.org/10.1080/08839514.2021.1922841

© 2021 Taylor & Francis

http://orcid.org/0000-0001-7031-6674
http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/08839514.2021.1922841&domain=pdf&date_stamp=2021-07-09

There are three main kinds of machine learning: supervised learning,
unsupervised learning and reinforcement learning as shown in Figure 1. In
supervised learning, we have x as input variables, and try to learn
a function mapping from x to y, y is called output variable. For example,
we give an image to network as input and want to predict a number from
model, say from 0 to 4, it may be any one of a five given images.

Supervised learning can be further divided into classification and regres-
sion. Classification is basically a method of processing some input and map-
ping it to discrete output. Spam filter is the simplest example of classification;
e-mails in inbox are process by machine learning spamming algorithm and if
some criteria is fulfilled than e-mails are consider as spam. In regression
problem, we try to predict numeric dependences of function value from set
of input parameters. For example, housing price prediction and many other
engineering problems.

A neural network is a widely used supervised learning algorithm and is
inspired by the function of human brain such as learning through experience.
Network is automated to learn by examining dataset over and over again,
identify and observing underlying relations to construct models, and persis-
tently improving these models.

There are three main types of artificial neural networks: standard neural
networks, convolution neural networks and recurrent neural networks. If we
want to solve problems such as real estate market prediction and online
advertising, we may use the standard neural network. Problems which utilize
images as input, convolution neural network is the best choice. Recurrent

Figure 1. Three common forms of machine learning, their subclasses and renowened algorihtms.

698 I. IQBAL ET AL.

neural network typically deals with the sequential data problems such as
machine translation and speech recognition. For more complex problems
such as autonomous driving we may use the combination of these three neural
networks.

Convolutional neural network has been studied since 1990s, but it became
popular with the following classic networks: LeNet (LeCun et al. 1998),
AlexNet (Krizhevsky, Sutskever, and Hinton 2012), VGG (Simonyan and
Zisserman 2015), and it has started to be utilized in different research areas
such as interpretation of medical images (Iqbal, et al. 2020; Iqbal, Mustafa, and
Ma 2020; Iqbal et al. 2021). Deep neural networks are very suitable to solve the
problems related to audio, images, speech and video (Lecun, Bengio, and
Hinton 2015). There are three types of layer in a convolutional neural network:
convolution layer, pooling layer and fully connected layer.

Hyperparameters can be tuned manually or by defined rules. Choosing
optimum hyperparameter is as essential as to choose the right learning algo-
rithm such as RMSProp or Adam and choose the correct network architecture
such as AlexNet or Inception (Szegedy et al. 2015) in terms of performance of
problem.

The objective of this research is to find out the better learning algorithm
which can be utilized to train the deep networks for image classification
problem with small dataset after tuning the hyperparameters. Several datasets
are available for speech recognition task but for image recognition problem
there are only a few datasets are available as compared to speech recognition.
And lot of GPUs or TPUs resources are needed to train the deep networks
using large dataset specially when we tune the hyperparameters.

It has been seen that different learning algorithms are more suitable for
different problems. Experiments of this research were performed using Keras
and TensorFlow (Abadi et al. 2016) deep programming frameworks. In all
experiments eight learning algorithms, which are renowned algorithms, were
employed which are SGDNesterov, AdaGrad, RMSProp, AdaDelta, Adam,
AdaMax, Nadam and AMSGrad. AdaGrad optimizer achieved best performance
on test set when hyperparameters: learning rate (η), mini-batch size (Mb),
number of layers (Nl), number of epochs (Ne), tune to near optimum values.

The rest of the article is organized as follows: “Learning algorithms” section
briefly describes the detail of eight algorithms which are used in this research
work to train the deep networks. “Experiments” section explains the hyper-
parameters, dataset, and network architectures of this research. “Evaluations”
section covers the detailed comparison of accuracy, time, and memory utiliza-
tion of all algorithms. Finally, the “Conclusions and future work” are discussed
in the last section.

APPLIED ARTIFICIAL INTELLIGENCE 699

Learning Algorithms

In this section, we briefly discuss learning algorithms which we used in this
research to train the networks. Gradient descent is a common framework to do
optimization task in artificial neural networks. This optimizer can minimize
the cost function. Gradient descent parameters are given in Equation (1) and
formula for updating parameters is in Equation (2).

θt ¼
b
w

� �

(1)

θtþ1 ¼ θt � η ÑL θtð Þ (2)

Where b is biases, w is weights, t is a time step, θ is a parameter, η is a learning
rate, L θð Þ is a cost function and ÑL θð Þ is the gradient of cost function.

Stochastic Gradient Descent Algorithm

There are three different types of gradient descent methods: batch gradient
descent, mini-batch gradient descent and stochastic gradient descent (SGD)
(Robbins and Monro 1951). In batch gradient descent, we calculate the partial
derivative of cost function with respect to parameters θ, weights and biases, for
the whole training dataset. While in mini-batch gradient descent, we choose
mini-batch size and perform an update for each mini-batch. If we choose
mini-batch size to one, then it is called SGD. It does not always converge and
may be noisy. The update rule of SGD is in Equation (3).

θtþ1 ¼ θt � η ÑL θt; x ið Þ; y ið Þ
� �

(3)

Where x ið Þis the ith training example, and y ið Þ is the ith label.
SGD is a simple and basic algorithm that usually does not give good

accuracy. There is a modified version of this method which is called SGD
with momentum (Qian 1999) which almost always works better than this
simple learning algorithm. Using momentum in SGD, accelerate gradients
vectors in the right directions which damp out oscillation and gives us fast
convergence. The update equations are Equations (4) – (5).

vt ¼ βvt� 1 þ η ÑL θtð Þ (4)

θtþ1 ¼ θt � vt (5)

Common value for momentum term β is from 0.8 to 0.999, where v is the
exponentially weighted moving average.

Nesterov (Nesterov 1983) is another method similar to momentum.
Nesterov accelerated gradient (NAG) algorithm calculate the partial derivative

700 I. IQBAL ET AL.

with respect to the approximate future position of weights and bias. The
equations of this technique are Equations (6) – (7). The default value of η
is 0.01.

vt ¼ βvt� 1 þ η ÑL θt � βvt� 1ð Þ (6)

θtþ1 ¼ θt � vt (7)

Adaptive Gradient Algorithm

Adaptive gradient or AdaGrad (Duchi, Hazan, and Singer 2011) algorithm
uses a simple gradient process at each time step, this method takes a different η
for every weight and bias. This learning algorithm does slighter change for
frequent parameters and greater change for infrequent parameters. The draw-
back of technique is vanishing η. Parameters update by AdaGrad are given in
Equations (8) – (9).

gt ¼ ÑL θtð Þ (8)

θtþ1 ¼ θt �
η
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Gt þ
p gt (9)

Where η is usually set to 0.01, Gt is a diagonal matrix and is an element wise
multiplication of matrix and vector. The value of hyperparameter, ε, of this
technique does not matter very much because it is just to prevent division by
zero, 10−8 is default value.

Root Mean Square Propagation Algorithm

RMSProp (Hinton, Srivastava, and Swersky 2012), which stands for root mean
square prop, this may speed up gradient descent. This technique divides the
learning rate η by an exponentially weighted moving averages of squared
gradients. This algorithm actually desires to damp out learning in one direc-
tion and try to speedup learning in another direction. It was first presented in
a Coursera lecture by Geoffrey Hinton. RMSProp usually works well for
recurrent neural networks. The update parameters process of this method is
given in Equations (10) – (11), where common default value of η in RMSProp
is 0.001.

vt ¼ βvt� 1 þ 1 � βð Þg2
t (10)

θtþ1 ¼ θt � η
gtffiffiffiffiffiffiffiffiffiffiffi

vt þ
p (11)

APPLIED ARTIFICIAL INTELLIGENCE 701

Adaptive Learning Rate Algorithm

Adaptive learning rate or AdaDelta (Zeiler 2012) optimizer is a modified
version of AdaGrad method to resolve the problem of learning rates which
frequently vanish. The equations of this learning algorithm are Equations
(12) – (14).

RMS δθ½ �t ¼
ffi

E δθ2� �

t þ

q

(12)

δ θt ¼
RMS θ½ �t� 1
RMS g½ �t

gt (13)

θtþ1 ¼ θt � δθt (14)

Where RMS is parameter root mean squared error, E is a running average.

Adaptive Moment Estimation Algorithm

Adam (Kingma and Ba 2015) stands for adaptive moment estimation; this is
most frequently used learning algorithm in neural networks which does not
use only the average of the sum of the gradients but also the average of the
sum of the squared gradients. This learning algorithm is actually
a combination of gradient descent with momentum and gradient descent
with RMSProp.

This algorithm has four hyperparameters. The learning rate which is most
important and usually set to 0.001. Momentum like term β1, the default choice
is 0.9. The RMSProp like term β2, the authors of the Adam paper recommend
it to 0.999. The choice of last hyperparameter value of ε is 10−8. The update
equations of Adam are shown in Equations (15) – (19).

mt ¼ β1 mt� 1 þ ð1 � β1Þ gt (15)

vt ¼ β2 vt� 1 þ ð1 � β2Þg
2
t (16)

m̂t ¼
mt

1 � βt
1

(17)

v̂t ¼
vt

1 � βt
2

(18)

θtþ1 ¼ θt �
m̂t
ffiffiffiffi
v̂t
p
þ

(19)

702 I. IQBAL ET AL.

Where m and v are the exponentially weighted moving average of gradient and
squared gradient, respectively.

AdaMax Algorithm

AdaMax (Kingma and Ba 2015) algorithm is a modified form of Adam
optimizer. In this method, L1 norm is used to find the gt term instead of L2
norm. The default value of learning rate is 0.002. Parameters update equations
are given in Equation (20) – (23)

mt ¼ β1 mt� 1 þ ð1 � β1Þ gt (20)

m̂t ¼
mt

1 � βt
1

(21)

vt ¼ β12 vt� 1 þ 1 � β12
� �

gt

�
�
�
�1 ¼ max β2 vt� 1; gt

�
�
�
�

� �
(22)

θtþ1 ¼ θt �
m̂t

vt
(23)

Nesterov Accelerated Adaptive Moment Estimation Algorithm

Nadam (Dozat 2016) stands for nesterov accelerated adaptive moment esti-
mation, this algorithm introduce NAG into Adam. The update parameters
process of Nadam can be seen in Equations (24) – (28).

mt ¼ β1 mt� 1 þ ð1 � β1Þ gt (24)

m̂t ¼
mt

1 � βt
1

(25)

vt ¼ β2 vt� 1 þ ð1 � β2Þg
2
t (26)

v̂t ¼
vt

1 � βt
2

(27)

θtþ1 ¼ θt � ffiffiffiffi
v̂t
p
þ

β1 m̂t þ
1 � β1

1 � βt
1

gt

� �

(28)

Where m̂ and v̂ are the bias-corrected form of m and v respectively, and
common value of learning rate η is 0.002.

APPLIED ARTIFICIAL INTELLIGENCE 703

AMSGrad Algorithm

Training neural networks for machine translation or image classification using
adaptive learning rate optimizer may not get the good accuracy. To resolve this
issue, a new exponential moving average variant or AMSGrad (Reddi, Kale,
and Kumar 2018) method uses the past squared gradients instead of exponen-
tial weighted moving average to modify the biases and weights. Updating
parameters with this learning algorithm without bias-corrected are given in
Equations (29) – (32). Common value of η is 0.001.

mt ¼ β1 mt� 1 þ ð1 � β1Þ gt (29)

vt ¼ β2 vt� 1 þ ð1 � β2Þg
2
t (30)

v̂t ¼ max v̂t� 1; vtð Þ (31)

θtþ1 ¼ θt �
mt
ffiffiffiffi
v̂t
p
þ

(32)

Experiments

There are dozens of hyperparameters in neural networks such as learning
rate, mini-batch size, number of hidden layers, number of epoch, number
of hidden units, learning rate decay, momentum term, activation function
etc. Important hyperparameters, which have greater influence on results,
are learning rate (Bengio 2012), mini-batch size, number of hidden layers
and number of epoch so we tune these four hyperparameters in this
research work.

Parameters and hyperparameters have very different functions. Weights
(filters) and biases are called parameters which have to learn from back-
propagation (Rumelhard, Hinton, and Williams 1986) while hyperparameters
need to tune.

Dataset of this research has total 1440 images with 10 Classes (Figure 2)
which are Calculator, Cigarette Pack, Fork, Glasses, Hook, Mug, Rubber
Duck, Scissor, Stapler, and Toothbrush, images were taken from Columbia
Object Image Library (Nene, Nayar, and Murase 1996). Every image in
dataset is RGB and 128 by 128 pixels after pre-processing. One pre-
processing requirement is to centering and standardize the data so we
divided each pixel value of image by 255. For hyperparameters tuning, we
need development set so we split the dataset into training ~60%, develop-
ment ~20% and testing ~20%.

One of the problem in training deep neural networks is exploding or
vanishing gradients so we employed Xavier uniform initializer (Glorot and

704 I. IQBAL ET AL.

Bengio 2010) in convolutional layers and fully connected layer to set the initial
random weights to resolve the issue of exploding and vanishing gradients to
some extent in deep neural networks. We utilized batch normalization (Ioffe
and Szegedy 2015) after convolution but before rectified linear unit (ReLU)
(Nair and Hinton 2010) activation to normalize hidden units activations and
as a result it speed up training process.

The proposed algorithm consists of two main phases as shown in
Figure 3. In first phase, we performed several experiments to come
closer to optimal values of hyperparameters as shown in Table 1. The
near optimal hyperparameters were selected based on the development
set performance of learning algorithms. We selected three best η for each

Figure 2. Dataset for image classification task with ten classes: Calculator, Cigarette Pack, Fork,
Glasses, Hook, Mug, Rubber Duck, Scissor, Stapler, and Toothbrush.

Figure 3. The layout of first and second phases of the proposed algorithm using coarse to fine
random sampling scheme.

APPLIED ARTIFICIAL INTELLIGENCE 705

optimizer independently, two Mb, two Nl and two Ne for each method.
In second phase, we executed twenty-four final experiments to find the
best learning algorithm. In all experiments, we utilized network archi-
tecture similar to ResNet (He et al. 2016) of 38 and 50 layers with skip
connections over three layers instead of two layers.

Evaluations

The comparison of training accuracy, development accuracy, training cost,
and development cost of learning algorithms of experiment in which the
performance of all algorithms are better than their average performance on
test set (Table 2) are shown in Figure 4. While the performance on test set of
the same experiment of all algorithms can be seen via precision-recall curves
(Figure 5) and confusion matrices (Figure 6). We can say that the AdaGrad
algorithm outperform the other algorithms with 95.9% accuracy on test set
when we set learning rate to 0.0008, mini-batch size to 32, number of layers to
50, and number of epoch to 70.

Precision-recall curve is very valuable plot to find which algorithm is
performing better. Precision is the number of true positives over the sum of
the number of true positives and the number of false positives. Recall is the

Table 1. Eight learning algorithms with their learning rates, mini-batch sizes, number of layers, and
number of epochs.

Learning
algorithms Learning rates (η)

Mini-batch sizes
(Mb)

Number of layers
(Nl)

Number of epochs
(Ne)

SGDNesterov 0.0009, 0.0015, 0.003 32
and
64

38
and
50

50
and
70

AdaGrad 0.0001, 0.0004, 0.0008
RMSProp 0.000009, 0.00001,

0.00003
AdaDelta 0.03, 0.06, 0.11
Adam 0.00001, 0.00005, 0.0001
AdaMax 0.00007, 0.00015, 0.0004
Nadam 0.00002, 0.00004, 0.00008
AMSGrad 0.0000099, 0.00003,

0.00009

Table 2. Training time, memory utilization, and accuracy on test set of eight learning algorithms.
Bold font shows the best results.

Learning algorithms

Training time
(seconds) Trained model memory (megabytes)

Accuracy on
test set

Minimum Maximum 38 Layers architecture 50 Layers architecture Average Best

SGDNesterov
AdaGrad
RMSProp
AdaDelta
Adam
AdaMax
Nadam
AMSGrad

166
157
161
175
168
164
176
173

365
362
374
418
395
382
418
409

135
135
135
203
203
203
203
270

180
180
180
271
271
271
271
361

0.871
0.889
0.847
0.877
0.882
0.864
0.855
0.857

0.938
0.959
0.917
0.938
0.927
0.941
0.955
0.934

706 I. IQBAL ET AL.

number of true positives over the sum of the number of true positives and the
number of false negatives. A high area under the precision-recall curve denotes
high precision as well as high recall, where high recall tells us a low false
negative rate, and high precision is simply a low false positive rate.

Confusion matrix (Townsend 1971) is a pictorial way for summarizing the
performance of algorithm. Each row of confusion matrix indicates the
instances of true class and each column indicates the instances of predicted

Figure 4. Accuracy and cost curves of eight learning algorithms on training and development sets.
(a) Training accuracy, (b) Development accuracy, (c) Training cost, (d) Development cost.

APPLIED ARTIFICIAL INTELLIGENCE 707

class. The diagonal entries of confusion matrix show the number for which the
predicted class is same as true class, though non-diagonal entries are those
which are mislabeled by the algorithm. The higher the diagonal values the
better the performance of algorithm.

If we observe Figure 6 carefully, we can see that AdaGrad, RMSProp,
AdaDelta, AdaMax, Nadam and AMSGrad wrongly classified a few Scissor
images to Toothbrush. We can also see that SGDNesterov, AdaGrad, AdaMax
and Nadam algorithms faced difficulty to distinguish between Fork and

Figure 4. Continued.

708 I. IQBAL ET AL.

Toothbrush images. But all algorithms 100% correctly recognized Hook, Mug,
and Rubber Duck images.

Best and average accuracies on test set from all twenty-four experiments,
maximum and minimum training time to train the networks using each
learning algorithms and the memory need to save the trained model in hard
disk drive are shown in Table 2. Trained model saving time in hard disk drive

Figure 5. Precision-recall curves of eight learning algorithms on test set of ten object classes. (a)
SGDNesterov optimizer, (b) AdaGrad optimizer, (c) RMSProp optimizer, (d) AdaDelta optimizer, (e)
Adam optimizer, (f) AdaMax optimizer, (g) Nadam optimizer, (h) AMSGrad optimizer.

APPLIED ARTIFICIAL INTELLIGENCE 709

for 38 layers’ architecture is around 42 seconds and 50 layers’ architecture is
around 72 seconds for all algorithms.

All experiments were performed on GEFORCE GTX1080-8GD5X with
CUDA compute capability and last twenty-four experiments took around
17.5 hours. Thirty-eight layers’ architecture has approximately 17.6 million
trainable parameters and more than 41 thousand non-trainable parameters.

Figure 5. Continued.

710 I. IQBAL ET AL.

Fifty layers’ architecture has approximately 23.6 million trainable parameters
and more than 53 thousand non-trainable parameters.

Conclusions and Future Work

Deep convolutional neural network has become a very useful tool for various
scientific research areas nowadays. The goal of this research was to find the
best learning algorithm and near optimum hyperparameters values for image

Figure 5. Continued.

APPLIED ARTIFICIAL INTELLIGENCE 711

classification problem with small dataset. Experiments of this research was
divided in two phases. In first phase, several experiments were performed for
each learning algorithm to come closer to optimum values of hyperpara-
meters which were tuned for image classification task. The second phase was
aimed to determine the best learning algorithm from eight algorithms which
were discussed in this research to train the deep networks. After completion
of first phase, we selected three best η for each optimizer independently, two

Figure 5. Continued.

712 I. IQBAL ET AL.

Mb, two Nl and two Ne for each technique. We then executed twenty-four
final experiments and found that AdaGrad algorithm performed much better
when learning rate was 0.0008, mini-batch size was 32, number of layers
were 50, and number of epoch were 70 than the rest of the learning
algorithms.

For future work, we are aiming to do localization and detection of
robotic grasps of objects with deep reinforcement learning as well as
work in image processing and guidance for knee and hip replacement
surgical robot.

Disclosure Statement

The authors declare that there is no conflict of interests.

Figure 6. Confusion matrices of eight learning algorithms on test set of ten object classes. (a)
SGDNesterov optimizer, (b) AdaGrad optimizer, (c) RMSProp optimizer, (d) AdaDelta optimizer, (e)
Adam optimizer, (f) AdaMax optimizer, (g) Nadam optimizer, (h) AMSGrad optimizer.

APPLIED ARTIFICIAL INTELLIGENCE 713

Funding

This work was supported by the “Chinese Natural Science Research Project” under grant
[2017YFC0110700].

ORCID

Imran Iqbal http://orcid.org/0000-0001-7031-6674

References

Abadi, M.; Agarwal, A.; Barham, P.; Brevdo, E.; Chen, Z.; Citro, C.; Corrado, G.S.; Davis, A.;
Dean, J.;Devin, M.; et al. 2016. TensorFlow: Large-scale machine learning on heterogeneous
distributed systems. http://arxiv.org/abs/1603.04467 .

Andrej Karpathy, George Toderici, Sanketh Shetty, Thomas Leung, Rahul Sukthankar, Li Fei-
Fei. Proceedings of International Computer Vision and Pattern Recognition (CVPR 2014),
In 2014, it took place at the Greater Columbus Convention Center in Columbus, Ohio. Main
Conference: June 24–27, 2014

Figure 6. Continued.

714 I. IQBAL ET AL.

http://arxiv.org/abs/1603.04467

Bengio, Y. 2012. Practical recommendations for gradient-based training of deep architectures.
Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics), Springer, Berlin, Heidelberg. 7700
LECTU:437–78.

Collobert, R., and J. Weston. 2008. A unified architecture for natural language processing.
Proceedings of the 25th International Conference on Machine Learning, Helsinki, Finland,
2008. http://portal.acm.org/citation.cfm?doid=1390156.1390177 .

Dozat, T. 2016. Incorporating nesterov momentum into adam. ICLR Workshopno 1:2013–16.
Duchi, J., E. Hazan, and Y. Singer. 2011. Adaptive subgradient methods for online learning and

stochastic optimization. Journal of Machine Learning Research 12:2121–59. http://jmlr.org/
papers/v12/duchi11a.html .

Glorot, X., and Y. Bengio. 2010. Understanding the difficulty of training deep feedforward
neural networks. Journal of Machine Learning Research 9:249–56.

He, K., X. Zhang, S. Ren, and J. Sun. 2016 December. Deep residual learning for image
recognition. Proceedings of the IEEE Computer Society Conference on Computer Vision
and Pattern Recognition. Las Vegas, USA, 770–78.

Hinton, G., L. Deng, D. Yu, G. E. Dahl, A. Mohamed, N. Jaitly, A. Senior, V. Vanhoucke,
P. Nguyen, T. Sainath, et al. 2012. Deep neural networks for acoustic modeling in speech
recognition: The shared views of four research groups. IEEE Signal Processing Magazine 29
(6):82–97. http://ieeexplore.ieee.org/abstract/document/6296526/ .

Hinton, G. E., N. Srivastava, and K. Swersky. 2012. Lecture 6a- overview of mini-batch gradient
descent. COURSERA: Neural Networks for Machine Learning 31. http://www.cs.toronto.
edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf .

Ioffe, S., and C. Szegedy. 2015. Batch normalization: accelerating deep network training by
reducing internal covariate shift. 32nd International Conference on Machine Learning,
ICML, 1:448–56.Lille, France. http://arxiv.org/abs/1502.03167 .

Iqbal, I., G. Mustafa, and J. Ma. 2020. Deep learning-based morphological classification of
human sperm heads. Diagnostics 10 (5):325. https://www.mdpi.com/2075-4418/10/5/325 .

Iqbal, I., G. Shahzad, N. Rafiq, G. Mustafa, and J. Ma. 2020. Deep learning-based automated
detection of human knee joint’s synovial fluid from magnetic resonance images with transfer
Learning. IET Image Processing 14 (10):1990–98. doi:10.1049/iet-ipr.2019.1646.

Iqbal, I., M. Younus, K. Walayat, M. U. Kakar, and J. Ma. 2021. Automated multi-class
classification of skin lesions through deep convolutional neural network with dermoscopic
images. Computerized Medical Imaging and Graphics 88:101843. doi:10.1016/j.
compmedimag.2020.101843.

Kingma, D. P., and J. L. Ba. 2015. Adam: A method for stochastic optimization. 3rd
International Conference on Learning Representations. San Diego, USA. http://arxiv.org/
abs/1412.6980 .

Krizhevsky, A., I. Sutskever, and G. E. Hinton. 2012. ImageNet classification with deep
convolutional neural networks. Advances in Neural Information Processing Systems
2:1097–105.

LeCun, Y., L. Bottou, Y. Bengio, and P. Haffner. 1998. Gradient-based learning applied to
document recognition. Proceedings of the IEEE 86:2278–323. https://papers.nips.cc/paper/
4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf .

Lecun, Y., Y. Bengio, and G. Hinton. 2015. Deep Learning. Nature 521 (7553):436–44.
doi:10.1038/nature14539.

Mcculloch, W. S., and W. Pitts. 1943. A logical calculus of the ideas immanent in nervous
activity. Bulletin of Mathematical Biophysics 5 (4):99–115. doi:10.1007/BF02478259.

APPLIED ARTIFICIAL INTELLIGENCE 715

http://portal.acm.org/citation.cfm?doid=1390156.1390177
http://jmlr.org/papers/v12/duchi11a.html
http://jmlr.org/papers/v12/duchi11a.html
http://ieeexplore.ieee.org/abstract/document/6296526/
http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
http://arxiv.org/abs/1502.03167
https://www.mdpi.com/2075-4418/10/5/325
https://doi.org/10.1049/iet-ipr.2019.1646
https://doi.org/10.1016/j.compmedimag.2020.101843
https://doi.org/10.1016/j.compmedimag.2020.101843
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
https://doi.org/10.1038/nature14539
https://doi.org/10.1007/BF02478259

Nair, V., and G. E. Hinton. 2010. Rectified linear units improve restricted boltzmann machines.
Proceedings of the 27th International Conference on Machine Learning, Haifa, Palestine.
807–14.

Nene, S. A., S. K. Nayar, and H. Murase. 1996. Columbia University Image Library. http://
www1.cs.columbia.edu/CAVE/software/softlib/coil-100.php

Nesterov, Y. 1983. A method for unconstrained convex minimization problem with the rate of
convergence O (1/K2). Doklady Akademii Nauk SSSR 269 (3):543–47.

Qian, N. 1999. On the momentum term in gradient descent learning algorithms. Neural
Networks 12 (1):145–51. doi:10.1016/S0893-6080(98)00116-6.

Robbins, H., and S. Monro. 1951. A stochstic approximation method. The Annals of
Mathematical Statistics 22 (3):400–07. doi:10.1214/aoms/1177729586.

Rumelhard, D. E., G. E. Hinton, and R. J. Williams. 1986. Learning representations by
back-propagating errors. Letters To Nature 323:533–36. doi:10.1038/323533a0.

Samuel, A. L. 1959. Some Studies in machine learning using the game of checkers. IBM Journal
of Research and Development 3 (3):210–29. doi:10.1147/rd.33.0210.

Sashank Reddi, Satyen Kale, Sanjiv Kumar. Sixth International Conference on Learning
Representations. Vancouver Convention Center, Vancouver CANADA. Mon Apr 30th
through May 3rd, 2018

Simonyan, K., and A. Zisserman. 2015. Very deep convolutional networks for large-scale image
recognition. 3rd International Conference on Learning Representations, ICLR 2015 -
Conference Track Proceedings. ICLR 2015 held May 7 - 9, 2015 in San Diego, CA.

Szegedy, C., W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and
A. Rabinovich. 2015. Going Deeper with Convolutions. Proceedings of the IEEE Computer
Society Conference on Computer Vision and Pattern Recognition, 07-12-June:1–9. Boston,
USA.

Townsend, J. T. 1971. Theoretical analysis of an alphabet confusion matrix. Attention
Perception & Psychophysics 9 (1A):40–50. doi:10.3758/BF03213026.

Zeiler, M. D. 2012. ADADELTA: An adaptive learning rate method. http://arxiv.org/abs/1212.
5701.

716 I. IQBAL ET AL.

http://www1.cs.columbia.edu/CAVE/software/softlib/coil-100.php
http://www1.cs.columbia.edu/CAVE/software/softlib/coil-100.php
https://doi.org/10.1016/S0893-6080(98)00116-6
https://doi.org/10.1214/aoms/1177729586
https://doi.org/10.1038/323533a0
https://doi.org/10.1147/rd.33.0210
https://doi.org/10.3758/BF03213026
http://arxiv.org/abs/1212.5701
http://arxiv.org/abs/1212.5701

	Abstract
	Introduction
	Learning Algorithms
	Stochastic Gradient Descent Algorithm
	Adaptive Gradient Algorithm
	Root Mean Square Propagation Algorithm
	Adaptive Learning Rate Algorithm
	Adaptive Moment Estimation Algorithm
	AdaMax Algorithm
	Nesterov Accelerated Adaptive Moment Estimation Algorithm
	AMSGrad Algorithm

	Experiments
	Evaluations
	Conclusions and Future Work
	Disclosure Statement
	Funding
	ORCID
	References

