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ABSTRACT
Increase in popularity of deep learning in various research areas 
leads to use it in resolving image classification problems. The 
objective of this research is to compare and to find learning 
algorithms which perform better for image classification task 
with small dataset. We have also tuned the hyperparameters 
associated with optimizers and models to improve perfor-
mance. First, we performed several experiments using eight 
learning algorithms to come closer to optimal values of hyper-
parameters. Then, we executed twenty-four final experiments 
with near optimum values of hyperparameters to find the best 
learning algorithm. Experimental results showed that the 
AdaGrad learning algorithm achieves better accuracy, lesser 
training time, as well as fewer memory utilization compared to 
the rest of the learning algorithms.

Introduction

Machine learning is a subfield of computer science that provides ability to 
electronic devices to learn automatically and improve their performance with-
out being programmed with any task-specific rules. Arthur Samuel in 1952 
made the first learning code game of checkers (Samuel 1959). Deep learning is 
subclass of machine learning. We typically say it “Deep” when we have more 
than two layers in network otherwise it is called “Shallow” learning. The study 
of deep learning started in 1940s (Mcculloch and Pitts 1943) when McCulloch 
introduce the ideas immanent in nervous activity using calculus. Using mas-
sive datasets in deep networks achieved better performance for image recogni-
tion (LeCun et al. 1998), video classification (Karpathy et al. 2014), natural 
language processing (Collobert and Weston 2008), and speech recognition 
(Hinton et al. 2012) tasks.
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There are three main kinds of machine learning: supervised learning, 
unsupervised learning and reinforcement learning as shown in Figure 1. In 
supervised learning, we have x as input variables, and try to learn 
a function mapping from x to y, y is called output variable. For example, 
we give an image to network as input and want to predict a number from 
model, say from 0 to 4, it may be any one of a five given images.

Supervised learning can be further divided into classification and regres-
sion. Classification is basically a method of processing some input and map-
ping it to discrete output. Spam filter is the simplest example of classification; 
e-mails in inbox are process by machine learning spamming algorithm and if 
some criteria is fulfilled than e-mails are consider as spam. In regression 
problem, we try to predict numeric dependences of function value from set 
of input parameters. For example, housing price prediction and many other 
engineering problems.

A neural network is a widely used supervised learning algorithm and is 
inspired by the function of human brain such as learning through experience. 
Network is automated to learn by examining dataset over and over again, 
identify and observing underlying relations to construct models, and persis-
tently improving these models.

There are three main types of artificial neural networks: standard neural 
networks, convolution neural networks and recurrent neural networks. If we 
want to solve problems such as real estate market prediction and online 
advertising, we may use the standard neural network. Problems which utilize 
images as input, convolution neural network is the best choice. Recurrent 

Figure 1. Three common forms of machine learning, their subclasses and renowened algorihtms.
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neural network typically deals with the sequential data problems such as 
machine translation and speech recognition. For more complex problems 
such as autonomous driving we may use the combination of these three neural 
networks.

Convolutional neural network has been studied since 1990s, but it became 
popular with the following classic networks: LeNet (LeCun et al. 1998), 
AlexNet (Krizhevsky, Sutskever, and Hinton 2012), VGG (Simonyan and 
Zisserman 2015), and it has started to be utilized in different research areas 
such as interpretation of medical images (Iqbal, et al. 2020; Iqbal, Mustafa, and 
Ma 2020; Iqbal et al. 2021). Deep neural networks are very suitable to solve the 
problems related to audio, images, speech and video (Lecun, Bengio, and 
Hinton 2015). There are three types of layer in a convolutional neural network: 
convolution layer, pooling layer and fully connected layer.

Hyperparameters can be tuned manually or by defined rules. Choosing 
optimum hyperparameter is as essential as to choose the right learning algo-
rithm such as RMSProp or Adam and choose the correct network architecture 
such as AlexNet or Inception (Szegedy et al. 2015) in terms of performance of 
problem.

The objective of this research is to find out the better learning algorithm 
which can be utilized to train the deep networks for image classification 
problem with small dataset after tuning the hyperparameters. Several datasets 
are available for speech recognition task but for image recognition problem 
there are only a few datasets are available as compared to speech recognition. 
And lot of GPUs or TPUs resources are needed to train the deep networks 
using large dataset specially when we tune the hyperparameters.

It has been seen that different learning algorithms are more suitable for 
different problems. Experiments of this research were performed using Keras 
and TensorFlow (Abadi et al. 2016) deep programming frameworks. In all 
experiments eight learning algorithms, which are renowned algorithms, were 
employed which are SGDNesterov, AdaGrad, RMSProp, AdaDelta, Adam, 
AdaMax, Nadam and AMSGrad. AdaGrad optimizer achieved best performance 
on test set when hyperparameters: learning rate (η), mini-batch size (Mb), 
number of layers (Nl), number of epochs (Ne), tune to near optimum values.

The rest of the article is organized as follows: “Learning algorithms” section 
briefly describes the detail of eight algorithms which are used in this research 
work to train the deep networks. “Experiments” section explains the hyper-
parameters, dataset, and network architectures of this research. “Evaluations” 
section covers the detailed comparison of accuracy, time, and memory utiliza-
tion of all algorithms. Finally, the “Conclusions and future work” are discussed 
in the last section.
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Learning Algorithms

In this section, we briefly discuss learning algorithms which we used in this 
research to train the networks. Gradient descent is a common framework to do 
optimization task in artificial neural networks. This optimizer can minimize 
the cost function. Gradient descent parameters are given in Equation (1) and 
formula for updating parameters is in Equation (2). 

θt ¼
b
w

� �

(1) 

θtþ1 ¼ θt � η ÑL θtð Þ (2) 

Where b is biases, w is weights, t is a time step, θ is a parameter, η is a learning 
rate, L θð Þ is a cost function and ÑL θð Þ is the gradient of cost function.

Stochastic Gradient Descent Algorithm

There are three different types of gradient descent methods: batch gradient 
descent, mini-batch gradient descent and stochastic gradient descent (SGD) 
(Robbins and Monro 1951). In batch gradient descent, we calculate the partial 
derivative of cost function with respect to parameters θ, weights and biases, for 
the whole training dataset. While in mini-batch gradient descent, we choose 
mini-batch size and perform an update for each mini-batch. If we choose 
mini-batch size to one, then it is called SGD. It does not always converge and 
may be noisy. The update rule of SGD is in Equation (3). 

θtþ1 ¼ θt � η ÑL θt; x ið Þ; y ið Þ
� �

(3) 

Where x ið Þis the ith training example, and y ið Þ is the ith label.
SGD is a simple and basic algorithm that usually does not give good 

accuracy. There is a modified version of this method which is called SGD 
with momentum (Qian 1999) which almost always works better than this 
simple learning algorithm. Using momentum in SGD, accelerate gradients 
vectors in the right directions which damp out oscillation and gives us fast 
convergence. The update equations are Equations (4) – (5). 

vt ¼ βvt� 1 þ η ÑL θtð Þ (4) 

θtþ1 ¼ θt � vt (5) 

Common value for momentum term β is from 0.8 to 0.999, where v is the 
exponentially weighted moving average.

Nesterov (Nesterov 1983) is another method similar to momentum. 
Nesterov accelerated gradient (NAG) algorithm calculate the partial derivative 
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with respect to the approximate future position of weights and bias. The 
equations of this technique are Equations (6) – (7). The default value of η 
is 0.01. 

vt ¼ βvt� 1 þ η ÑL θt � βvt� 1ð Þ (6) 

θtþ1 ¼ θt � vt (7) 

Adaptive Gradient Algorithm

Adaptive gradient or AdaGrad (Duchi, Hazan, and Singer 2011) algorithm 
uses a simple gradient process at each time step, this method takes a different η 
for every weight and bias. This learning algorithm does slighter change for 
frequent parameters and greater change for infrequent parameters. The draw-
back of technique is vanishing η. Parameters update by AdaGrad are given in 
Equations (8) – (9). 

gt ¼ ÑL θtð Þ (8) 

θtþ1 ¼ θt �
η
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Gt þ
p gt (9) 

Where η is usually set to 0.01, Gt is a diagonal matrix and is an element wise 
multiplication of matrix and vector. The value of hyperparameter, ε, of this 
technique does not matter very much because it is just to prevent division by 
zero, 10−8 is default value.

Root Mean Square Propagation Algorithm

RMSProp (Hinton, Srivastava, and Swersky 2012), which stands for root mean 
square prop, this may speed up gradient descent. This technique divides the 
learning rate η by an exponentially weighted moving averages of squared 
gradients. This algorithm actually desires to damp out learning in one direc-
tion and try to speedup learning in another direction. It was first presented in 
a Coursera lecture by Geoffrey Hinton. RMSProp usually works well for 
recurrent neural networks. The update parameters process of this method is 
given in Equations (10) – (11), where common default value of η in RMSProp 
is 0.001. 

vt ¼ βvt� 1 þ 1 � βð Þg2
t (10) 

θtþ1 ¼ θt � η
gtffiffiffiffiffiffiffiffiffiffiffi

vt þ
p (11) 
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Adaptive Learning Rate Algorithm

Adaptive learning rate or AdaDelta (Zeiler 2012) optimizer is a modified 
version of AdaGrad method to resolve the problem of learning rates which 
frequently vanish. The equations of this learning algorithm are Equations 
(12) – (14). 

RMS δθ½ �t ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E δθ2� �

t þ

q

(12) 

δ θt ¼
RMS θ½ �t� 1
RMS g½ �t

gt (13) 

θtþ1 ¼ θt � δθt (14) 

Where RMS is parameter root mean squared error, E is a running average.

Adaptive Moment Estimation Algorithm

Adam (Kingma and Ba 2015) stands for adaptive moment estimation; this is 
most frequently used learning algorithm in neural networks which does not 
use only the average of the sum of the gradients but also the average of the 
sum of the squared gradients. This learning algorithm is actually 
a combination of gradient descent with momentum and gradient descent 
with RMSProp.

This algorithm has four hyperparameters. The learning rate which is most 
important and usually set to 0.001. Momentum like term β1, the default choice 
is 0.9. The RMSProp like term β2, the authors of the Adam paper recommend 
it to 0.999. The choice of last hyperparameter value of ε is 10−8. The update 
equations of Adam are shown in Equations (15) – (19). 

mt ¼ β1 mt� 1 þ ð1 � β1Þ gt (15) 

vt ¼ β2 vt� 1 þ ð1 � β2Þg
2
t (16) 

m̂t ¼
mt

1 � βt
1

(17) 

v̂t ¼
vt

1 � βt
2

(18) 

θtþ1 ¼ θt �
m̂t
ffiffiffiffi
v̂t
p
þ

(19) 
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Where m and v are the exponentially weighted moving average of gradient and 
squared gradient, respectively.

AdaMax Algorithm

AdaMax (Kingma and Ba 2015) algorithm is a modified form of Adam 
optimizer. In this method, L1 norm is used to find the gt term instead of L2 
norm. The default value of learning rate is 0.002. Parameters update equations 
are given in Equation (20) – (23) 

mt ¼ β1 mt� 1 þ ð1 � β1Þ gt (20) 

m̂t ¼
mt

1 � βt
1

(21) 

vt ¼ β12 vt� 1 þ 1 � β12
� �

gt

�
�
�
�1 ¼ max β2 vt� 1; gt

�
�
�
�

� �
(22) 

θtþ1 ¼ θt �
m̂t

vt
(23) 

Nesterov Accelerated Adaptive Moment Estimation Algorithm

Nadam (Dozat 2016) stands for nesterov accelerated adaptive moment esti-
mation, this algorithm introduce NAG into Adam. The update parameters 
process of Nadam can be seen in Equations (24) – (28). 

mt ¼ β1 mt� 1 þ ð1 � β1Þ gt (24) 

m̂t ¼
mt

1 � βt
1

(25) 

vt ¼ β2 vt� 1 þ ð1 � β2Þg
2
t (26) 

v̂t ¼
vt

1 � βt
2

(27) 

θtþ1 ¼ θt � ffiffiffiffi
v̂t
p
þ

β1 m̂t þ
1 � β1

1 � βt
1

gt

� �

(28) 

Where m̂ and v̂ are the bias-corrected form of m and v respectively, and 
common value of learning rate η is 0.002.
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AMSGrad Algorithm

Training neural networks for machine translation or image classification using 
adaptive learning rate optimizer may not get the good accuracy. To resolve this 
issue, a new exponential moving average variant or AMSGrad (Reddi, Kale, 
and Kumar 2018) method uses the past squared gradients instead of exponen-
tial weighted moving average to modify the biases and weights. Updating 
parameters with this learning algorithm without bias-corrected are given in 
Equations (29) – (32). Common value of η is 0.001. 

mt ¼ β1 mt� 1 þ ð1 � β1Þ gt (29) 

vt ¼ β2 vt� 1 þ ð1 � β2Þg
2
t (30) 

v̂t ¼ max v̂t� 1; vtð Þ (31) 

θtþ1 ¼ θt �
mt
ffiffiffiffi
v̂t
p
þ

(32) 

Experiments

There are dozens of hyperparameters in neural networks such as learning 
rate, mini-batch size, number of hidden layers, number of epoch, number 
of hidden units, learning rate decay, momentum term, activation function 
etc. Important hyperparameters, which have greater influence on results, 
are learning rate (Bengio 2012), mini-batch size, number of hidden layers 
and number of epoch so we tune these four hyperparameters in this 
research work.

Parameters and hyperparameters have very different functions. Weights 
(filters) and biases are called parameters which have to learn from back-
propagation (Rumelhard, Hinton, and Williams 1986) while hyperparameters 
need to tune.

Dataset of this research has total 1440 images with 10 Classes (Figure 2) 
which are Calculator, Cigarette Pack, Fork, Glasses, Hook, Mug, Rubber 
Duck, Scissor, Stapler, and Toothbrush, images were taken from Columbia 
Object Image Library (Nene, Nayar, and Murase 1996). Every image in 
dataset is RGB and 128 by 128 pixels after pre-processing. One pre- 
processing requirement is to centering and standardize the data so we 
divided each pixel value of image by 255. For hyperparameters tuning, we 
need development set so we split the dataset into training ~60%, develop-
ment ~20% and testing ~20%.

One of the problem in training deep neural networks is exploding or 
vanishing gradients so we employed Xavier uniform initializer (Glorot and 
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Bengio 2010) in convolutional layers and fully connected layer to set the initial 
random weights to resolve the issue of exploding and vanishing gradients to 
some extent in deep neural networks. We utilized batch normalization (Ioffe 
and Szegedy 2015) after convolution but before rectified linear unit (ReLU) 
(Nair and Hinton 2010) activation to normalize hidden units activations and 
as a result it speed up training process.

The proposed algorithm consists of two main phases as shown in 
Figure 3. In first phase, we performed several experiments to come 
closer to optimal values of hyperparameters as shown in Table 1. The 
near optimal hyperparameters were selected based on the development 
set performance of learning algorithms. We selected three best η for each 

Figure 2. Dataset for image classification task with ten classes: Calculator, Cigarette Pack, Fork, 
Glasses, Hook, Mug, Rubber Duck, Scissor, Stapler, and Toothbrush.

Figure 3. The layout of first and second phases of the proposed algorithm using coarse to fine 
random sampling scheme.
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optimizer independently, two Mb, two Nl and two Ne for each method. 
In second phase, we executed twenty-four final experiments to find the 
best learning algorithm. In all experiments, we utilized network archi-
tecture similar to ResNet (He et al. 2016) of 38 and 50 layers with skip 
connections over three layers instead of two layers.

Evaluations

The comparison of training accuracy, development accuracy, training cost, 
and development cost of learning algorithms of experiment in which the 
performance of all algorithms are better than their average performance on 
test set (Table 2) are shown in Figure 4. While the performance on test set of 
the same experiment of all algorithms can be seen via precision-recall curves 
(Figure 5) and confusion matrices (Figure 6). We can say that the AdaGrad 
algorithm outperform the other algorithms with 95.9% accuracy on test set 
when we set learning rate to 0.0008, mini-batch size to 32, number of layers to 
50, and number of epoch to 70.

Precision-recall curve is very valuable plot to find which algorithm is 
performing better. Precision is the number of true positives over the sum of 
the number of true positives and the number of false positives. Recall is the 

Table 1. Eight learning algorithms with their learning rates, mini-batch sizes, number of layers, and 
number of epochs.

Learning 
algorithms Learning rates (η)

Mini-batch sizes  
(Mb)

Number of layers  
(Nl)

Number of epochs  
(Ne)

SGDNesterov 0.0009, 0.0015, 0.003 32 
and 
64

38 
and 
50

50 
and 
70

AdaGrad 0.0001, 0.0004, 0.0008
RMSProp 0.000009, 0.00001, 

0.00003
AdaDelta 0.03, 0.06, 0.11
Adam 0.00001, 0.00005, 0.0001
AdaMax 0.00007, 0.00015, 0.0004
Nadam 0.00002, 0.00004, 0.00008
AMSGrad 0.0000099, 0.00003, 

0.00009

Table 2. Training time, memory utilization, and accuracy on test set of eight learning algorithms. 
Bold font shows the best results.

Learning algorithms

Training time 
(seconds) Trained model memory (megabytes)

Accuracy on 
test set

Minimum Maximum 38 Layers architecture 50 Layers architecture Average Best

SGDNesterov 
AdaGrad 
RMSProp 
AdaDelta 
Adam 
AdaMax 
Nadam 
AMSGrad

166 
157 
161 
175 
168 
164 
176 
173

365 
362 
374 
418 
395 
382 
418 
409

135 
135 
135 
203 
203 
203 
203 
270

180 
180 
180 
271 
271 
271 
271 
361

0.871 
0.889 
0.847 
0.877 
0.882 
0.864 
0.855 
0.857

0.938 
0.959 
0.917 
0.938 
0.927 
0.941 
0.955 
0.934
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number of true positives over the sum of the number of true positives and the 
number of false negatives. A high area under the precision-recall curve denotes 
high precision as well as high recall, where high recall tells us a low false 
negative rate, and high precision is simply a low false positive rate.

Confusion matrix (Townsend 1971) is a pictorial way for summarizing the 
performance of algorithm. Each row of confusion matrix indicates the 
instances of true class and each column indicates the instances of predicted 

Figure 4. Accuracy and cost curves of eight learning algorithms on training and development sets. 
(a) Training accuracy, (b) Development accuracy, (c) Training cost, (d) Development cost.
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class. The diagonal entries of confusion matrix show the number for which the 
predicted class is same as true class, though non-diagonal entries are those 
which are mislabeled by the algorithm. The higher the diagonal values the 
better the performance of algorithm.

If we observe Figure 6 carefully, we can see that AdaGrad, RMSProp, 
AdaDelta, AdaMax, Nadam and AMSGrad wrongly classified a few Scissor 
images to Toothbrush. We can also see that SGDNesterov, AdaGrad, AdaMax 
and Nadam algorithms faced difficulty to distinguish between Fork and 

Figure 4. Continued.
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Toothbrush images. But all algorithms 100% correctly recognized Hook, Mug, 
and Rubber Duck images.

Best and average accuracies on test set from all twenty-four experiments, 
maximum and minimum training time to train the networks using each 
learning algorithms and the memory need to save the trained model in hard 
disk drive are shown in Table 2. Trained model saving time in hard disk drive 

Figure 5. Precision-recall curves of eight learning algorithms on test set of ten object classes. (a) 
SGDNesterov optimizer, (b) AdaGrad optimizer, (c) RMSProp optimizer, (d) AdaDelta optimizer, (e) 
Adam optimizer, (f) AdaMax optimizer, (g) Nadam optimizer, (h) AMSGrad optimizer.
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for 38 layers’ architecture is around 42 seconds and 50 layers’ architecture is 
around 72 seconds for all algorithms.

All experiments were performed on GEFORCE GTX1080-8GD5X with 
CUDA compute capability and last twenty-four experiments took around 
17.5 hours. Thirty-eight layers’ architecture has approximately 17.6 million 
trainable parameters and more than 41 thousand non-trainable parameters. 

Figure 5. Continued.
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Fifty layers’ architecture has approximately 23.6 million trainable parameters 
and more than 53 thousand non-trainable parameters.

Conclusions and Future Work

Deep convolutional neural network has become a very useful tool for various 
scientific research areas nowadays. The goal of this research was to find the 
best learning algorithm and near optimum hyperparameters values for image 

Figure 5. Continued.
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classification problem with small dataset. Experiments of this research was 
divided in two phases. In first phase, several experiments were performed for 
each learning algorithm to come closer to optimum values of hyperpara-
meters which were tuned for image classification task. The second phase was 
aimed to determine the best learning algorithm from eight algorithms which 
were discussed in this research to train the deep networks. After completion 
of first phase, we selected three best η for each optimizer independently, two 

Figure 5. Continued.
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Mb, two Nl and two Ne for each technique. We then executed twenty-four 
final experiments and found that AdaGrad algorithm performed much better 
when learning rate was 0.0008, mini-batch size was 32, number of layers 
were 50, and number of epoch were 70 than the rest of the learning 
algorithms.

For future work, we are aiming to do localization and detection of 
robotic grasps of objects with deep reinforcement learning as well as 
work in image processing and guidance for knee and hip replacement 
surgical robot.
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Figure 6. Confusion matrices of eight learning algorithms on test set of ten object classes. (a) 
SGDNesterov optimizer, (b) AdaGrad optimizer, (c) RMSProp optimizer, (d) AdaDelta optimizer, (e) 
Adam optimizer, (f) AdaMax optimizer, (g) Nadam optimizer, (h) AMSGrad optimizer.
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