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Iwoki math is an abstract board game that consists on placing Received 24 July 2020
tiles and that combines the calculation of simple mathematical Revised 2 November 2020
operations with the spatial perception of two-dimensional  Accepted 6 November 2020

objects. Due to its inherent features, it is also a very challenging
environment to test different artificial intelligence technologies
and methods. In this paper, a series of intelligent agents with
different reasoning and decision capacities have been devel-
oped based on different artificial intelligence techniques
applied to game theory, such as Minimax or Reinforcement
Learning. Their capabilities have been tested by playing games
with each other, but also against human players, obtaining
remarkable results. The experimental results ratify conclusions
already known at a theoretical level but also provide a new
contribution that could be the basis for future research.

Introduction

It is well known that board games not only can provide a lot of fun, but they
also reinforce creativity and teach decision making, as well as respect for rules.
But they have been particularly challenging in the field of artificial intelligence
practically from its inception (Yannakakis and Togelius 2018). The reasons are
that they are closed, but well-defined environments and most of them have
a huge search space where the performance of complex algorithms can be
analyzed.

The iwoki math (hereinafter iwoki) is a game that combines these benefits
with its educational character. It reinforces the capacity for analysis and
activates the cognitive functions to put into practice the best strategy through-
out the games. It also trains the spatial perception of two-dimensional objects
to make way for the calculation of simple mathematical operations. This game,
even still being in the prototype phase, has been tested in playful environ-
ments, and it was a finalist in the Meeple Factory prototype competition 2019.
Example of the elements of the game and rules are available in the Appendix
Section.
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This article discusses the development of various agents who compete with
each other by playing iwoki. In order to limit the scope of this work, the study
is carried out on a simplified version of the iwoki, where only two players are
involved in each game. Different agents have been tested in different game
configurations: a Random Agent, a Greedy Agent, a Minimax Agent and
a Reinforcement Learning Agent. Also, a human player will interact with the
game using an interface as a Human Agent.

The objective of this paper is to determinate which implementations are
most appropriate for agents who play iwoki in order to win and to evaluate
which configurations optimize results. On the other hand, to provide new
insights in the field of artificial intelligence applied to games, using iwoki as
a research tool. It will allow to compare different agents, establish certain
conclusions about them and explore new lines of research.

The rest of the paper is structured as follows: first, a background on artificial
intelligence in board games and the particularities of iwoki are presented.
Then, in Sections 3 and 4, the methodology and experimental setup are
described. The results are discussed in Section 5. Finally the conclusions and
future work are presented.

Background
Iwoki Characterization

Game theory is based on the analysis of the behavior of various agents, focused
on pursuing a goal and interacting with each other according to their strate-
gies. The agents obtain a positive or negative gain according to the success or
failure of the interactions carried out. The scope of game theory reaches the
economy, history, politics, international relations, military strategy, etc.
(Osborne et al. 2004).

According to Yannakakis and Togelius (2018), we can classify games in
different ways, with respect to some of their characteristics: number of players,
observability, stochasticity, action space and time granularity.

Depending on the number of players, the game can be with or without an
opponent: In a game without an opponent, only one player is involved. The
most used methods for its implementation are the brute force method without
heuristics, or if we want to take into account the time and memory consump-
tion as determining factors, the heuristic search by means of A* or IDA*
(Russell and Norvig 2010). Examples of games without an opponent are
8-puzzle, solitaire, etc. In games with an opponent two or more agents
compete for a common goal. Examples of games with an opponent are 3-in-
a-row, chess, go, checkers, etc. Other examples of where there is more than one
opponent are Poker or Monopoly. On the other hand, cooperative games are
those where the participants share common interests and act for the benefit of
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such ends without competing with each other. In noncooperative games, each
player is concerned only with his/her own interests (Zagal, Rick, and Hsi
2006).

A relevant feature is the order of the moves or actions (time granularity). It
may be that the players’ turns are alternate or random. They may also be
sequential (such as parcheesi) or simultaneous, in which the players make their
decisions at the same time (rock, paper or scissors, or even in more complex
games, such as Real Time Simulators (Fernandez-Ares et al. 2017)).

The knowledge of each player about the rest catalogs the game as one of
perfect information, when it does not affect randomness and the information
of each player is shared for the others (checkers), or of imperfect information,
where randomness does intervene and each player hides information from the
rest (black jack).

Determinism refers to the intervention of randomness or stochasticity.
Thus, a game can be deterministic if there is no room for randomness, or non-
deterministic (or stochastic) if randomness intervenes in any of the above
characteristics. For example, the HearthStone card game includes random
actions after playing some cards (Garcia-Sanchez et al. 2020). The Bayesian
Game concept considers as random variables the unknown information of the
game. Bayes’ theorem is applied by establishing probabilities about concrete
states of the game based on previously known information, after a series of
previous actions carried out by the opponents. Bayesian Game, therefore,
makes sense for games with imperfect information (Harsanyi 1967).

Von Newman and Morgenstern (Von Neumann and Morgenstern 2007)
define the concept of zero-sum games with an opponent, in which everything
a player manages to win corresponds to what his/her opponent loses. In other
words, the sum of what one wins and the other loses is zero. An example of
a zero-sum game is an individual tennis match, where each player’s point is
detrimental to the opponent. However, in a doubles tennis match, the points
scored by a partner is also used by the other. This case is an example of a non-
zero-sum play. John Forbes Nash adds a new concept for non-zero-sum cases:
the so-called Nash Equilibrium, a situation in which none of the players is
interested in modifying their individual strategy so as not to be disadvantaged,
knowing their opponents’ one (Daskalakis, Goldberg, and Papadimitriou
2009).

Given the nature of iwoki, the characteristics and properties that must be
taken into account when implementing the agents are as follows: First, it is
a game with an opponent in which two agents are involved in
a noncooperative way, since each agent looks after his/her own interests and
they have no common objective. Thus, each player aims to get the highest
score after the final point tally, which will make him/her the winner of the
game. The rules of the game, the complete description of which is available at
in the Appendix Section, are the same for the two players and known by both.
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The opponents will play their turn in a sequential and alternative way from the
beginning to the end of the game. There are different strategies for the initial
turn of the game, for the advance turns and for when the game is about to be
over. The player who starts the game can also be the one who plays the last
turn before the final point tally, which does not mean that he/she has more
chances to win. Since everything a player wins for his/her own benefit is lost by
the other player in the same proportion, and vice versa, it is categorized as
a zero-sum game. In other words, what a player gains with respect to his
opponent is the difference in the score obtained after the final point tally,
which is accomplished by performing the best possible move in each turn.
Finally, the game can be considered as deterministic or not, according to
certain modifications necessary for the implementation of a particular agent,
as it is specified in the Experimental Setup Section.

Once the peculiarities of this game have been understood, the next subsec-
tions will discuss the methods that are going to be used in this paper.

Minimax Algorithm

For two-player games in which both players try to win and where one player’s
actions depend decisively on the other’s, adversarial search algorithms are
used. Minimax is the basic opponent search algorithm, which has been
traditionally implemented from perfect information board games (Turing
1953).

Basically, it means that each player chooses the best move for himself,
keeping in mind that the opponent has chosen the most harmful option for
his/her opponent. For each state of the game the algorithm generates
a complete search tree, applies to each terminal node a utility function (also
called evaluation function) and performs a propagation of those values to the
root node. The Minimax algorithm results very appropriate for agents who
play board games, putting into practice effective both offensive and defensive
strategies (Kalles and Kanellopoulos 2008).

The main problem with this method is that the tree increases exponentially
with depth and with the branching factor of the tree. That is, with the number
of simulated movements, the order of complexity in time is O(a®) and the
order of complexity in space is O(ab) being a the Tree Branching Factor, and
b the Tree Depth.

For example, in the case of chess, if we interpret that it has an average
branching factor of 30 nodes (moves on each position) and 80 moves are made
throughout the game, 30* nodes will be explored. This is more than the
number of atoms in the universe. The complexity in time and space makes
a tree that contemplates all the possibilities in each move unfeasible.

As a rule, the applications of the Minimax algorithm finish the search at
a certain depth. The nodes of that depth become terminals and use a state
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evaluation function that determines a heuristic. This technique is called
Minimax with suspension. It is also possible to limit the search by run time.
The root node will stay with the best option found until the maximum time is
reached. Applying these modifications on the Minimax algorithm will not be
able to guarantee that the agent will find the optimal play, but it will be reliable
if the heuristics are applied properly. Following these modifications to solve
the problem of complexity, there are different techniques to improve
Minimax, such as alpha-beta pruning, heuristic continuation (Russell and
Norvig 2010) or the Scout Algorithm (Pearl 1980), among others. In the case
of the basic Alpha-Beta pruning the number of nodes to be explored is reduced
by avoiding passing through nodes in the tree that do not influence the
decision of the agent. When a node does not provide a better value than the
explored one until that moment, the branch is pruned.

Reinforcement Learning

Reinforcement Learning is a model in which an agent is interpreted as an
entity that interacts with the environment and learns from the consequences
of its actions. The environment provides the agent the different alternatives
in each specific state. For each of these alternatives the agent can perform an
action. As a consequence of executing certain action, the environment will
report to the agent a reward or a punishment. The execution of this action
will take it to a new state with new alternatives available (Sutton and Barto
2018).

Markov Chain is a probabilistic model in which the future state is con-
ditionally independent of past state (Kemeny and Snel 1960). Markov Decision
Process (MDP) derives from Markov Chain and mathematically formalizes
Reinforcement Learning problems (Kaelbling, Littman, and Moore 1996).
Describe a fully observable environment, defined by the tuple
(S,A(s),P,y,R(s,a)), where S is the finite set of states, A(s) is the finite set
of possible actions in each state s and P specifies the transitions between states.
It is a probability distribution of the state s’ which is accessed by executing the
action a from the current state s: P(s', s|a). The discount factor (y) indicates
how important the reward is in the long term, and takes values between 0 and
1. The higher the value of y is, the more important future rewards will be.
Conversely, a small value will tend to only take into account immediate
rewards. Finally, the reward (R(s,a)), obtained by executing action a from
a state s. It is a real number and does not depend on any previous state or
action. MDP must fulfill the Markov Property. This means that it is a necessary
and sufficient condition that P(s;y1|s;) = P(s¢11]s1, - - -, S¢), which implies that
the future state depends only on the present state and is independent of the
previous states. In other words, “given the present, the past and future are
independent of each other” (Kemeny and Snel 1960).
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The agent chooses actions based on a policy 7, which defines the agent’s
conduct. It determines what action should be taken in each state and depends
only on the current state, not the historical one. The policy does not change
over time. That is, in the same state, the same action will always be performed.
The optimal policy n* is the one that maximizes the cumulative sum of
rewards. For any MDP, there exists always a deterministic optimal policy 7%,
which is better than or equal to all other policies. The objective of the
algorithm is to find this optimal policy.

The Q-value function Q" (s, a) is defined as the cumulative reward expected
by choosing the action a in the state s and then following the policy 7. The
optimal Q-value function Q*(s,a) obtains the maximum achievable reward
value with a policy 77 from a state s and an action a. Consequently, knowing the
optimal Q-value function Q*(s,a) implies having the optimal policy 7*.

As the agent obtains rewards, the Q-values are updated by the Bellman
equation (Sutton and Barto 2018), until the optimal Q-value is reached. Once
the action a has been executed in the state s, the system must take into account
the maximum Q-value for each possible action 4’ in the state s". The equation
is defined as

Q(s,a) — (1 —a) - Q(s,a) + - <R+ Y- mfo(s’,a’)) (1)

where « indicates the learning rate at which the Q-values are updated in each
iteration, R is the reward, and max, Q(s',a’) refers to the estimation of the
optimal future value (next state, all actions). Each suitable Q(s,a) value is
stored in a table called the Q-table, for all state-action pairs. When the function
Q(s,a) learned up to that moment is used to determine the action to be
performed, the algorithm is said to work in exploitation mode. However, it
is very common to select actions at random in order to take into account new
possibilities. In this case the algorithm is said to work as exploration mode
(Silver et al. 2016).

A basic example of implementation with Reinforcement Learning is the one
developed on the simple Tic-Tac-Toe game (Song 2012). The algorithm gets
the agent to end up playing competently without previous experience and
allow it to reach the specified goal, such as victory, defeat or draw.

The problem with Reinforcement Learning algorithms is that they suffer
from the curse of dimensionality, as the number of states grows exponentially.
In order to deal with the great complexity involved in a large number of states
and actions, different solutions are proposed. One of them is the MDP with
hierarchical decomposition (Bai, Wu, and Chen 2015), that breaks down the
problem into a set of sub-problems that are easier to solve. It establishes
a different way of calculating Q* that allows to face a great depth of the state
search tree. A similar approach is done to create a multilayer RL framework to
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a Real Time Strategy (RTS) game (Andersen et al. 2009). The authors decom-
posed the large state space of the game and built small RL systems in different
layers, taking into account the granularity of the strategies to control the
behavior of the units in the game. Another possible solution is to combine
RL with other techniques. For example, in (Kebriaei, Ahmadabadi, and
Rahimi-Kian 2014) a hybrid model is applied for the Cournot game. The
agent uses a KNN (k-nearest neighbor) predictor to predict the next actions
of its rivals and learns the payoff of the state-action pair using RL.

Other technique is Deep Reinforcement Learning (van Hasselt, Guez, and
Silver 2016). This method uses a deep neural network to approximate the
values of Q(s, a, ©). The state s is the input of the neural network, the output is
a Q-value for each possible action a and © are the parameters of the network.
Deep Reinforcement Learning has led to great achievements in the recent
history of artificial intelligence, as is the case of AlphaGo, created by
DeepMind (Google) (Silver et al. 2016). In 2016, AlphaGo beat 18-time
world Go champion Lee Sedol in 4 of the 5 games they played. Until then it
was thought that this was a goal which artificial intelligence would still take
many years to achieve. Another successful example of Deep Reinforcement
Learning implementation is the one applied to classic Atari 2600 computer
games, such as Space Invaders, Seaquest, Breakout, Beam Rider, etc., in the
Arcade Learning Environment (Mnih et al. 2013). In this case, a Convolutional
Neural Network is trained with a Deep Reinforcement Learning algorithm that
uses as input the raw pixels and returns as output a value function that
estimates future rewards.

In this section some types of algorithms used to model games of various
characteristics have been mentioned. This paper focus on the most appropriate
ones for both agents that include intelligent behavior. The Minimax agent with
Alpha-Beta suspension and pruning will present reasoning similar to the
human with high experience in the game. The maximum time will be applied
to the in-depth search of each of the branches of the root node. This, as well as
the depth of the tree, will be parameters to be considered experimentally. The
QLearner agent, implemented with Reinforcement Learning, will be able to
take advantage of the knowledge acquired with the experience to choose the
best strategy. Both agents will be described in next section.

Methodology

This section describes the methodology that will be followed in this paper. It
has been divided into two research lines:

o Perfect information experiments: The agents Random and Greedy will be the rivals of
the Minimax, in a modification of the game that contemplates perfect information, since,
as previously discussed, for the Minimax agent all the tiles must be visible by both
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players. Then, a comparison will be made between different instances of the best of the
agents (predictably the best will be the Minimax, which takes into account the strategies
of an expert human player). Certain parameters will be determined, such as the depth
level of the search tree or the maximum time of exploration of the branches. Finally, the
author of the game will test the Minimax agent with its best configuration in a series of
Minimax vs. Human games.

o Imperfect information experiments: The Reinforcement Learning Agent (called
QLearner) will also face the Random and Greedy agents, but in this case with the normal
version of the iwoki, that is, keeping the small tiles hidden from the opponent’s view. An
evaluation will be made of the efficiency in terms of run time and memory consumption.

In general, the best configuration for the iwoki will be experimentally deter-
mined. The following methodology will be used: The iwoki will be modeled, so
that it can represent all the content of the game abstractaly. Likewise, an
implementation of the methods that the agents will have available in the
game is carried out, which will constitute the game space.

Next, the five agents will be developed: one will play randomly (Random
Agent), another one by the Greedy method (Greedy Agent), a third one will do
it using a Minimax search algorithm with suspension and Alpha-Beta pruning
(Minimax Agent), a Reinforcement Learning Agent (QLearner Agent) that will
take advantage of the experience obtained in previous training games and,
finally, an agent that provides an API so that a human can measure the
effectiveness of the previous ones (Human Agent).

Once the implementation is completed, the agents will play against each
other in two-player games. Each game may have a history of each one of the
moves that the agents make in their turns. This will allow to make an
exhaustive pursuit of the evolution of the game and even to be able to make
a simulation in the physical version of the iwoki. This way it will be possible to
contrast the actions of the agents with what a human would have decided to do
in each turn. The number of games played by the agents will be enough to
establish a series of firm conclusions regarding the nature of the agents. The
new insights provided in all the previous steps will allow identifying new ways
to go deeper into the study of the implemented solutions, as well as to establish
new research lines.

Agent Description

Once the components of the game space have been implemented, the detail of
the agents is described as follows.

Random Agent

This agent chooses its moves randomly. It gets from the game space all the
possible actions to do in its turn and chooses randomly one of them, without
taking into account how good or bad the move is.
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Greedy Agent

This agent emulates the playfulness of a human novice. It implements the
simple strategy of choosing the option that gives it the most points immedi-
ately, regardless of how easy the move benefits its opponent. It gets from the
game space all the possible actions to take in its turn. Then it selects the best
one, taking into account the previous strategy. In case of different options that
give it the same points, its preference will be the following one:

(1) Place a small tile on the subtraction side. This increases the white token
number, which is good for getting a hexagonal tile.

(2) Place a small tile on the addition side. In any case, placing a small tile
brings the player closer to the end of the game.

(1) Place a hexagonal tile.

(1) Take a tile. This does not give it any points, so it only ultimately
chooses to take this action. Obviously, if it has just taken a tile, the
option will be to pass the turn to the other player, as specified by the
iwoki rules.

Minimax Agent

This agent applies the strategies that a highly experienced human player has. It
has to anticipate its opponent’s moves to know the possible future states of the
game, from the state it is in, to an horizon (depth). To do so, in each turn it
must generate a Minimax search tree with Alpha-Beta pruning and suspension
in depth and time. To get the best move in the current turn:

1. The alpha_beta function is invoked, that is executed in a recursive way for the Max and
Min nodes, from the root node to the leaf nodes. As it is explored, new nodes are
generated following these steps:

(a) It gets from the game space all the possible actions to be carried out.

(b) For each of them, a new lower level node is created, invoking a method
that:

» Makes a clone of the game space.

« Executes the action on the new game space. This is the new game state associated to the
generated node.

2. The tree is branched out recursively until a leaf node is found in two different ways:
« Reaching the established depth level.

« Reaching the end of the game in the corresponding branch without having reached the
depth level.

The utility function is found by subtracting the scores after the final point tally.
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3. Undoing the recursion updates the values of Alpha and Beta until the root
node is given a value. At the same time, it allows pruning the branches that will
not present better values than those found so far.

The maximum time for deep searching along each of the main branches of
the root node is determined. For example, for a game state where the Minimax
agent has 6 possible actions and the maximum time set is 10 seconds, if any of
those 6 branches has not been fully explored in 10 seconds, it will propagate the
best option found so far and follow it by the next branch of the root node. This
limits the total search in that turn to a maximum of 60 seconds. As it is a search
with suspension, the algorithm does not guarantee to find the best action in
each turn, but establishing some suitable parameters of time and depth, as it will
be seen in the following sections, the results will be able to be satisfactory.

QLearner Agent
This agent is based on training by playing numerous games. The more it trains,
the more it can be expected to perform against its opponents. The way to
choose the best option in each turn is the following:

1. The game space provides it with all the possible actions a in the current
state s.

2. In order to determine the action to be performed:

(a) It obtains from the Q-table the previously stored Q-values (s, a) values.
Those that do not exist are initialized with a hyperparameter.

(b) In exploration mode, the action to be performed is selected from a weighted random
function on the Q-values. These take value previously by the softrmax method, which obtains
a probability distribution. Thus, the values are between 0 and 1 and the sum of all of them is
1.

(c) In exploitation mode, the agent simply selects the action that has the highest Q-value.
In case of having several actions with this maximum value, one is taken randomly.

3. The selected action is executed. Each movement in the course of the game is stored in
an action-state value list.

4. At the end of the game:

(a) The value of the reward is calculated as the difference between the score achieved by
the QLearner agent and its opponent, after the final count tally.

(b) The Bellman equation is then applied in an iterative manner to the previous list of
action-state values, traced in the reverse direction (that is, first the action-state that has
brought to the end of the game and then the rest until the action-state of the beginning).
Thus, all Q-values of the movements performed in the game are obtained.

(c) The Q-values are stored in the Q-table.

5. After the execution of the number of games that constitutes the training of the agent,
the Q-table is stored in a file in order to reuse the learning in future executions.
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Human Agent
It implements an interface that allows a human player to face any of the other
agents.

Experimental Setup

Each of the items in the experimental phase is explained as follows. Firstly, for the
correct interpretation of the results, a 100-game match between the Greedy and
Random agents is launched. This way we can have a reference of how good the
first one is with respect to the second one when other agents compete against both.

Perfect Information Experiments

In this experiment, a modification of the iwoki will be used in order to make it
deterministic and information perfect. To this purpose, the small and hex-
agonal tiles that have not yet been drawn will not be hidden. This way the
agent will know in advance which tile will draw if it chooses this action in its
turn and, in the same way;, it will also know which tile its opponent could draw
in its case. Thus, the agent is deterministic, eliminating completely the ran-
domness once the tiles have been drawn and the game is started. Also, the
players’ small tiles, as well as the hexagonal ones, will remain visible at all
times. Thus, the game will be one of perfect information.

Minimax will play games against Random and Greedy agents. It will use
different configurations according to the hyperparameters used, which are:

o Search tree depth: 1, 2, 3 and 4 level values will be used. For depth 1, 2 and
3, 100 games will be executed, which will allow evaluating the results and
drawing certain conclusions. Due to the high computational cost, only 10
games will be executed when depth level 4 is applied.

o Maximum search time on each of the main branches of the root node
(maxTime): A range of values from 0.5 to 90 seconds will be applied. As it will
be seen in the next section, it only makes sense to apply this hyperparameter in
games against the Greedy agent under depth = 3.

After playing all of the above games, the two Minimax settings that are likely
to be optimal for playing against a human player will be determined so as to
balance their effectiveness with the time it takes to execute their turn. Minimax
agent will play 20 games against itself applying these two settings to determine
definitively which one is the most appropriate. This will be the one used by the
agent to play 5 games against the creator of the iwoki.
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Imperfect Information Experiments

Initially, 10,000 games will be launched between QLearner and Random and
Greedy agents in order to establish a reference of how they behave before any
training.

Two sub-experiments with QLearner will follow. In each of them there will
be two phases:

1. In a first step, the model is trained to acquire as much experience as possible. The
training aims to give it the knowledge of the best policy to apply in order to determine
what action it should take in each state to get the best score at the end of the game. The
QLearner training will be done with games in exploration mode against the Random
agent, because it is the one that explores all the possible actions in each state. If it did it
against the Greedy, its training would not be so exhaustive, since it would only learn
from the opponent the best actions in the short term.

2. Once the agent has been trained, the next phase is to put its experience into practice.
Now the QLearner games will be in exploitation mode. The agent will choose in each
state the action that will provide him with more benefit in the long term, as it will have
learned in the previous training.

In the first sub-experiment, a batch of 100,000 games will be executed in
exploration mode between the QLearner and Random agents. Once the train-
ing is finished, 50,000 games will be played against Random and Greedy
agents.

For the next sub-experiment, it is opted to modify the iwoki in order to
dramatically reduce the space of possible states. The small and hexagonal tiles
will be randomly drawn at the beginning, but a seed is set up so that they will
always be the same in all the games played. Those drawn throughout the game
will be randomly seedless. As in the previous experiment, the QLearner agent
is trained with 100,000 QLearner vs. Random games and then the same
matches are performed (50,000 QLearner vs. Random and 50,000 QLearner
vs. Greedy).

With regard to the hyperparameters, a Cartesian Grid Search (that is, all
possible combinations)With regard to the hyperparameters, a Cartesian Grid
Search (that is, all possible combinations) is performed with Learning Rate («)
and Discount Factor (y) in order to establish their appropriate values. The first
step is to assign them values divisors of 10 (1, 0.1, 0.01, 0.001 and 0.0001) and
execute a batch of 5,000 games for every pair. In each case, it is observed is
performed with Learning Rate («) and Discount Factor (y) in order to estab-
lish their appropriate values. The first step is to assign them values divisors of
10 (1, 0.1,0.01, 0.001 and 0.0001) and execute a batch of 5,000 games for every
pair. In each case, it is observed how many Q-values are generated throughout
the games and what percentage of them are updated with a new different value
from the initial one. It can be seen that the smaller « and y become, the lower
the number of Q-values generated is (it ranges around 140,000-150,000) and
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the percentage of updated Q-values increases (it ranges around 30%-44%). Not
only these values are relevant but also how the evolution is. That is, how close
to a state of convergence the evolution of the updated Q-values is after all those
5,000 games. The conceptual meaning of this approach is that small values of «
and y imply that the system learns less, but the policy learned in each case
seems to be more optimized. In contrast, the higher « and y are, the more the
agent will learn but with a not so optimized policy. For QLearner’s training, the
aim is to obtain as many Q-values as possible, without the rate of updated
Q-values being too low. It is relevant that & has much more influence on the
results than y. Taking into account that the final experiments will reach
100,000 games in exploration mode and another 50,000 in exploitation
mode, it is concluded that the most appropriate range of values for both
hyperparameters is between 0.1 and 1. A new Cartesian study is performed
with new batches of 5,000 games to adjust hyperparameters to the optimal
values. The final setup is a Learning Rate («) of 0.4 and a Discount Factor (y) of
0.8 for all cases.

Results

First of all, agents Greedy and Random were faced off in 100,000 games. The
results shown that the Greedy Agent completely outperformed the Random
one by winning all the times, taking an average of 0.16 seconds to finish and an
average difference score of 9.73 points.

Minimax Analysis

This subsection describes the results of the Minimax agents against the other
agents, as previously explained. Table 1 summarizes the results of confronting
the Minimax agent vs the Greedy and Random ones.

The results shown in Table 1 provide a series of general conclusions. On one
hand, the average number of turns is irrelevant, since in all cases are similar
and they are independent of the specified parameters. In addition, it is
observed that whatever the value of the hyperparameter depth is, the
Minimax agent always beats the Random one with a big difference of scores.
We can conclude that Random is far below the level of Minimax. As expected,
Minimax games with depth = 1 against Greedy are very balanced. We can see
that the number of wins of each one is very similar (47 to 49) and that there is
only 0.7 points difference on average. It is confirmed in an experimental way
something that was known on a theoretical level: that the Minimax search
using a tree of depth = 1 is equivalent to the Greedy search.

The average values while the depth increases can be seen in Figure 1.

It is worth emphasizing the information seen in Figure 2 about the evolu-
tion of the games won by Minimax versus Greedy, while increasing the search
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Table 1. Results for Minimax. An overline over a column header indicates average values.

Depth maxTime #Games Wins Loses Draws Time (sec) Dif.Scores Turns Decisiontime  Nodes
Minimax Vs Random
1 - 100 100 0 0 297 245 13 0.22 339
2 - 100 100 0 0 27.73 26.94 14 1.97 3.498
3 - 100 100 0 0 238.8 26.5 14 16.13 442
4 - 10 10 0 0 1534.8 27.2 13 116.4 278.857
Minimax Vs Greedy
1 - 100 47 49 4 3.87 0.7 12 0.3 455
2 - 100 71 25 4 44.81 5.29 12 3.54 6.315
3 - 100 90 8 2 699 7.5 13 50.27 140.505
4 - 10 10 0 0 2907 9.67 12 188.4 548.321
Minimax (depth = 3) Vs Greedy
3 0.5 100 46 49 5 9.81 —1.05 12 0.77 1.719
3 1 100 41 57 2 15.2 —1.88 12 1.18 2.8
3 5 100 49 43 8 58.39 0.69 13 443 11.563
3 10 100 48 52 0 113.4 —0.82 13 8.52 13.545
3 20 100 60 28 12 192.6 1.36 13 13.96 37.979
3 30 100 60 28 12 264.6 3.28 13 19.7 53.063
3 40 100 56 32 12 361.8 5.2 13 27.67 51.473
3 50 100 76 20 4 403.2 7.8 13 299 88.872
3 60 100 60 38 2 475.8 6.94 14 33.52 97.015
3 70 100 82 16 2 480 9.17 13 36.67 97.429
3 80 100 80 19 1 570.6 10.7 14 39.89 118.672
3 90 100 95 1 4 591 16.6 13 44.43 122.166
Minimax Vs Random
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Figure 1. Average values in Minimax vs. Random games by increasing depth.

depth. With depths of 1, 2, 3 and 4, Minimax wins 47%, 71%, 90% and 100% of
games, respectively. The difference in scores between the two grows in a linear
trend, as can be seen in Figure 3. As a counterpart, increasing the depth means
increasing exponentially the number of nodes generated in the search tree and,
therefore, the time that the agent takes to decide the action to be carried out.
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Minimax Vs Greedy
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Figure 2. Minimax wins against Greedy by increasing depth.
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Figure 3. Average values in Minimax vs. Greedy games when increasing depth.

This can be seen graphically in Figure 3. It is confirmed that the complexity of
the Minimax algorithm exponentially grows in time and space as the depth of
the search tree increases.

Focused on a match between the best Minimax configuration and a human,
depth = 4 is a value that implies too much time waiting for Minimax to decide
the best move, even though the winning percentage against Greedy is 100%.
That is the reason why we have chosen to run Minimax games with different
maxTime values against Greedy, only with depth = 3. The decision time to be
improved is 50.27 seconds (Minimax vs. Greedy with depth = 3), without
losing the effectiveness of more than 90% of won games (9 wins and 2 draws).
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The average values follow a linear growth trend as the maxTime parameter is
increased, as shown in Figure 4.

In Table 1 it can be seen that when maxTime = 90 seconds the maximum
percentage of wins of Minimax versus Greedy is reached and the time it takes
the agent to decide its move in each turn is 44.43 seconds. That is, the time is
reduced by 11.62%. While the experiment seems to have improved the win
percentage, a much larger number of games would conclude that
maxTime = 90 seconds would improve the time but would never become
more effective in terms of win percentage, since unlimited time explores the
entire tree down to depth level 3 through all the branches of the root node.
Therefore, it seems that the optimal configuration of the Minimax agent to
play against a human, balancing efficiency with time, is depth = 3 and
maxTime = 90 seconds.

Thus, two different Minimax agent instances were also performed. The
parameters were set to:

» Minimax agent 1: depth = 3 and unlimited timeout.

« Minimax agent 2: depth = 3 and maxTime = 90 seconds.

The result of the 20 games were 10 victories for Minimax agent 1 and 2
draws, with an average duration of 22.19 minutes and an average difference of
score of 2.50. The average duration is close to the sum of the value of Minimax
vs. Greedy (11.65 minutes) and the one using maxTime = 90 seconds
(9.85 minutes).
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Figure 4. Average values in games Minimax vs. Greedy by increasing maxTime.
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Table 2. Final Scores of Minimax vs.
Human games.

Minimax Human

Game 1 48 43
Game 2 51 47
Game 3 59 54
Game 4 51 45
Game 5 65 62

Finally, five games were played between the iwoki’s author and the Minimax
Agent 2.The results can be seen in Table 2. Throughout the game, the
Minimax agent determines its movement once it gets the depth established
as a parameter (depth = 3) or when it reaches the maximum time in any of the
branches of the root node (maxTime = 90 seconds). Minimax tends to take the
lead and avoids at all costs that the human places hexagonal tiles, maintaining
higher score than the human at all times. However, the human, who is able to
play with an expert strategy, can keep a close scoring difference. When reach-
ing the last turns of the game, the Minimax movement is determined when the
algorithm gets to the leaf node before reaching the depth limit and before
spending the established time limit. This implies that the Minimax’s decision
will undoubtedly be the optimal one. It anticipates the human and disrupts
any strategy he tries to implement That is the reason why Minimax is always
better than the human, no matter how expert he is. It is worth mentioning that
if the human player had not been the creator of the iwoki, the scoring
difference between the two players would have been greater in favor of
Minimax.

Reinforcement Learning Analysis

The results of the batches of the different sub-experiments specified in the
Section 4.2 are shown in Table 3.

The first 10,000 games of QLearner vs. Random and QLearner vs. Greedy
show how the QLearner agent behaves in exploration mode, without any
previous training. It is necessary to explain that the total Q-values are all the
tuples (state, action) that are generated in all the games. That is, there will be
a Q-value for each of the possible actions in each state (game turn) of each of
the games played, as long as it has not been generated before for this state-
action, while the updated Q-values are those that, having been previously
generated, are updated with a different value from the initialization one.

According to the results of Table 3, and following the metrics illustrated in
the figures of the previous section, a series of conclusions can be drawn. Firstly,
the average number of turns and the average duration of the games are not
relevant, since their values are very similar in any of the typologies of the



- ¥/€0L591 1048 4] Lo 9'e— L 98¢8 L09LY 00005 1 Apaain

- JAZAT4 4 G8C16S6€ €l ¥7'0 9't- SLol 80¢9¢ LLLTT 00005 1 wopuey

N 66'8€C'E ¥7829.6 00€5965C €l 0 70— €97C S0z8y [43574 000001 d wopuey
Buluuibaq ay3 1e umesp 311 Swes

- L¥89/¢C €88/9189 €l ¥7'0 v9'ce— Ly Ly867 [4%} 0000S 1 Apaain

- 62581 60CTHySS 14" 14} £0'S— 00S1 6786C 1£981 00005 1 wopuey

N 88759y 00/6LEY L¥C/969¢€ €l ¥7'0 70's— 6SLE 9€56S S0€LE 00000L d wopuey
buiuuibaq ay3 1e umelp Ajwopues s3jiL

AN LS'0rS yeeesy 8¢/99ty [4) 6L°0 89'CE— 9 0266 1£4 00001 d Apaain

aW 07'S9o¥ CE6LEY 90¢989¢ €l Lz'o LL's— 86¢C 9665 90L€ 00001 d wopuey

9ZIS 3|Y-0 sanjea-p paiepdn sanjeA-p |e10| suing (s295) awir) $2103§"Jid smeiq leAly lsuies|p sawen# adA] SNSIDA

‘sopow (1) uoneyo|dx3 ui 1o (y) uoneiojdxy
ul aJe pakeid saweb ay3 jo adAy sy ‘sanjeA abelaAe $91EIPUI JISPEIY UWN|OD B UBAO 3UILIA0 UY ‘SJUWLRAX] Bujuies] JuawWadiouIdy J04 SHNSAY °€ d|qel

S. VIDEGAIN AND P. GARCIA SANCHEZ

<
[
~



APPLIED ARTIFICIAL INTELLIGENCE . 735

games and for all the agents. In addition, the 10,000 initial games that the
QLearner agent plays against Random do not present relevant information
either. We can see that the percentage of games won by the first one is around
37% of the total, with a mean difference in scores that is not big at all (5.11).
However, the other instances executed against agent Greedy show the low
effectiveness of the QLearner when it has not yet been trained, as it only wins
24 of the 10,000 games (0.24%) and the mean difference in scores is 32.68.
Concerning the first of the sub-experiments, QLearner training is an exer-
cise similar to the first 10,000 games but with a higher volume. Figure 5 shows
that the trend in terms of wins and score difference is the same. However, we
can find relevance in the number of Q-values generated (about 37 million),
being only 11,85% those updated along the 100.000 games. Once trained with
exploration instances, the behavior of the QLearner agent in exploitation mode
maintains the trend: the games against Random agent follow the same line as
in the training, with no relevant changes. This can be seen in Figure 6.
Regarding the matches against Greedy, there is no improvement compared
to the initial 10,000 games, as it only manages to win 112 of the 100,000,
(0.22%) and the difference in scores is maintained. Figure 7 graphically

QLearner Vs Random - 100000 Games - Exploration
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Figure 5. Metrics of the first training of QLearner vs. Random.
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QLearner Vs Random - 50000 Games - Explotation
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Figure 6. QLearner vs. Random metrics after the first training.

confirms this. The learning is nearly 37 million of Q-values, which implies
a 4.54 GB Q-file, plus about 50% more Q-values in the exploitation phase.
Despite this, no signs of improvement are found in either Random or Greedy
matches. During the experiment it has been tried to increase the number of
training games, but the consumption of computational resources makes it
unfeasible to obtain good results.

In order to reach some interesting conclusions in this work, the previously
mentioned modification of the iwoki is put into practice, which consists of always
drawing the same tiles at the beginning of the games. With this measure the space
of possible states is reduced considerably. The second sub-experiment adopts this
modification and from now on the results take another direction. The Table 3
shows that throughout the 100,000 training games there is a negligible difference
between QLearner and Random. Practically 50% of wins and a mean difference in
scores that can be considered insignificant (0.20). 25,965,300 Q-values are gen-
erated, 29.76% less than in the first experiment, and the percentage of updated
Q-values remains around 39% of the totals. Graphically, the evolution can be seen
in Figure 8. After such training, 50,000 instances of exploitation are launched
against the two opponents, raising some new considerations.
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QLearner Vs Greedy - 50000 Games - Explotation
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Figure 7. QLearner vs. Greedy metrics after the first training.

The games against Random agent find little difference in their reference
values. Therefore, the change from exploration to exploitation does not imply
a significant alteration in the evolution of these values. The graphs in Figure 9
confirm this trend. When playing against Greedy the result is different. The
graphs in Figure 10 show that the performance of the QLearner agent has
improved to the point that after 16,200 games, it always wins. It controls
Greedy’s actions, which always chooses the best move in the short term on
every turn, to learn the policy it should follow to get the most cumulative score.

Conclusions

In the course of this work, iwoki and its characteristics have been made known,
which has made it possible to model and implement its components has been
carried out. Based on the study of the state of the art, we have defined which
agents would be part of the experiments, according to the nature of the iwoki,
and we have proceeded to develop them. During the experimental phase,
a series of games have been carried out that have put the different agents
into competition. It has been determined how good the Minimax agent is with
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QLearner Vs Random - 100000 Games - Exploration
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Figure 8. Metrics of the second training of QLearner vs. Random.

respect to Random and Greedy. We have also been able to observe the
QLearner agent’s ability to learn by training it with Random and then demon-
strating its acquired knowledge against Greedy. Finally, we can see how the
Minimax agent was able to beat the creator of the iwoki, who at the same time,
is also the creator of the winning algorithm.

The results obtained cover the twofold purpose set out at the beginning of
the work. The first one is to find the appropriate implementation for the agents
of the two developed research lines, Minimax and Reinforcement Learning,
and to provide them with the optimal configuration according to the experi-
mental results. Moreover, we expect to present the iwoki as a new contribution
to the field of research in artificial intelligence applied to games, establishing
a starting point from which to develop a diversity of agents with different
technologies. The source code of the simulator, and all the implemented
agents described in this work, are available in Github: https://github.com/
videgain/iwoki.

Consequently, some lines of future work are identified as a result of what is
presented in this paper. There is the possibility of implementing the different
variants of Alpha-Beta pruning (Knuth and Moore 1975) available in the
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Figure 9. QLearner vs. Random metrics after the second training.

literature. But also, since the original iwoki is of imperfect information, as the
small tiles are not visible to the rest of the players, it could be developed as
a Bayesian game. This way it can be taken into account the probability that an
opponent has certain tiles, knowing the number of times they have been played
previously. Moreover, it would be appropriate to develop a Monte Carlo Tree
Search method (Chaslot et al. 2008), or even more advanced agents, such ones
used with Deep Reinforcement Learning (van Hasselt, Guez, and Silver 2016) or
agents optimized using Evolutionary Algorithms (Ferndndez-Ares et al. 2017).
This opens the door to a new line of research to study this specific case and
model a neuronal network that will allow the problem of iwoki to be treated.
Other possible lines of future work are to study if it is feasible to implement
a Recurrent Neural Network (RNN) (Deng, Zhang, and Shu 2018) for a new
Vanilla agent. The RNN would be similar to the one used for language models
when obtaining a sequence of words and returning a probability distribution of
the next word. The hidden state includes the text seen so far at each time step.

Finally, it would be interesting to establish a graphic environment that
makes it easier for a human player to execute his/her moves without having
to reproduce the moves with the physical version of the game, and also to
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Figure 10. QLearner vs. Greedy metrics after the second training.

Figure 11. Examples of tile placement. a) Correct placement: the small tile is placed on numbers. b)
Incorrect placement: the small tile does not match with any other number, and fits only on the
wildcard. c) Correct placement: in each case, the small tiles covering the wildcards also cover a red
number from another hexagonal tile.

extended the game to up to 6 players, just like the original iwoki.
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Appendix A. lwoki Rules

This appendix specifies iwoki rules adapted for only two players.

The iwoki math is a game to combine the calculation of simple mathematical operations with
the spatial perception of two-dimensional objects. Players fit together small and hexagonal tiles,
endeavoring to match the result of simple addition or subtraction on the smaller tiles with the
numbers on the hexagonal ones. As the game progresses, the options to choose the best strategy
will increase. The winner will be the one who gets the highest score after the final point tally.

It is formed by the next elements:

« 48 Small tiles: In each of the three outer corners there is a number from 1 to 4 and a plus (+)
or minus (-) sign in the center. Each face has the same numbers, but with the opposite sign.

« 20 Hexagonal tiles: In the vertices there is a number from 1 to 6 or a wildcard, which is
represented by a red hexagon. The same values are on both sides, so the order shown on one
side will be the opposite on the other.

Before starting, each player randomly chooses 9 small and 3 hexagonal tiles. The small tiles
are not seen by the opponent, but the hexagonal tiles will remain visible at all times

Appendix A.1. Course of play

The starting player lays one of his/her tiles on the table. If he/she chooses to start with
a hexagonal tile, the highest number on it will be noted on his/her score line. If he/she chooses
to start with a small tile, the result of the addition or subtraction that suits him/her best will be
noted on his/her score line.

Then, for the rest of the turns, each player will try to place a tile of either type, taking into
account the following:

o The result of the addition or subtraction of the small tiles must match the red numbers of
the adjacent hexagonal ones.

o The wildcard can be matched with any addition or subtraction, but it can only be matched
when the small tile also covers another red number on a different tile.

Figure 11. Shows these examples.

When a player places a tile, the score sheet is filled in by adding the number or numbers in
red. Wildcards count as zero. See Figure A.12 for examples.

Small tiles are drawn in the following cases:

» When it is not possible to place tiles of either type, a small one will be drawn and an attempt
made to place it. If this is not possible, it becomes the next player’s turn. Only one small tile can
be drawn each turn.

« If no tiles can be placed and there are no more to draw, it becomes the next player’s turn.

o A small tile can also be drawn voluntarily, even if it is possible to place one. Right after
drawing it is mandatory to place one of the tiles, either small or hexagonal.

The player will draw a hexagonal tile each time he/she has made a total o three of the
following moves:

« Placing a small tile using the subtraction side instead of the addition side.

 Drawing a small tile, either because he/she does not have placement options or because he/
she does so voluntarily.

« Passing the turn to the other player in the event that he/she cannot place any tiles.

Every time one of these actions are performed by a player, he/she will place a white token to
notify the other players how close he/she is to getting a new hexagonal tile. Once a player
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generates three white tokens, he/she will draw a hexagonal tile and remove the white tokens,
returning it to empty.

Appendix A.2. End of the game

When one of the players runs out of small tiles, regardless of hexagonal tiles, the other player
will get a chance to make his/her last move.

The final point tally will then be performed for both players: the final score of the player who
has run out of small tiles will be the score he/she has accumulated on the scoring sheet up to
that point. On the contrary, the score accumulated by the other player must be subtracted from
the highest number on each of the small tiles he/she has left.

The winner of the game will be the one who gets the highest score after the final point tally.
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