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Abstract
Currently available quantum computers suffer from constraints including hardware noise and a
limited number of qubits. As such, variational quantum algorithms that utilise a classical optimiser
in order to train a parameterised quantum circuit have drawn significant attention for near-term
practical applications of quantum technology. In this work, we take a probabilistic point of view
and reformulate the classical optimisation as an approximation of a Bayesian posterior. The
posterior is induced by combining the cost function to be minimised with a prior distribution over
the parameters of the quantum circuit. We describe a dimension reduction strategy based on a
maximum a posteriori point estimate with a Laplace prior. Experiments on the Quantinuum H1-2
computer show that the resulting circuits are faster to execute and less noisy than the circuits
trained without the dimension reduction strategy. We subsequently describe a posterior sampling
strategy based on stochastic gradient Langevin dynamics. Numerical simulations on three different
problems show that the strategy is capable of generating samples from the full posterior and
avoiding local optima.

1. Introduction

Variational quantum algorithms (VQAs) [1–4] are the leading paradigm for solving computational problems
on current generation quantum computers. A VQA solves the computational problem by turning it into an
optimisation problem over the parameters of a quantum circuit. The quantum computer is used to execute
the circuit, that is, to prepare a quantum state and perform measurements on it. The classical computer is
used to estimate the cost function from measurement outcomes and to update the parameters accordingly.
This process is repeated in the hope of finding the parameters yielding minimum cost, effectively encoding a
solution to the computational problem.

A number of VQAs have been proposed to attack specific problems in condensed matter physics,
quantum chemistry, machine learning and combinatorial optimisation, with demonstrations on existing
hardware [1–4]. One of the motivations is that the quantum circuit ansatz can be designed to comply with
hardware constraints (e.g. qubit-to-qubit connectivity and coherence time) and to encode domain
knowledge about the problem (e.g. symmetries and correlations). This is in contrast to fault-tolerant
quantum algorithms which use a large number of error-corrected qubits and deep circuits to solve generic
instances of a problem.

Despite the successes of VQAs, it is well known that the optimisation of parameterised quantum circuits
(PQCs) does not scale to large systems in general. The optimisation landscape is characterised by features
such as barren plateaus [5], narrow gorges [6], and exponentially many local minima [7], most of which have
poor quality [8]. Real experiments are further complicated by the fact that hardware is noisy, and execution
of quantum gates is slow in some architectures. Any improvement in parameter initialisation (e.g. [9–11]),
ansatz design (e.g. [12–14]) and training (e.g. [15–17]) could push the boundaries of VQA applications.

In the context of VQAs there exist a plethora of Bayesian methods which we briefly review here. Bayesian
optimisation is a zeroth-order method (i.e. it does not use gradient information) which is popular among
VQA practitioners [18–20]. Bayesian optimisation can, however, be used within first-order methods to tune
the stepsize [21] or initialisation [22]. Wang et al [23] uses Bayesian methods to infer the value of the cost
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Figure 1. Bayesian perspective on learning parameterised quantum circuits. Circuit parameters θ define a likelihood term via a
cost C(θ). A suitable choice of the cost function enables a variety of tasks, such as combinatorial optimisation, finding ground
states of Hamiltonians, and generative modelling. The prior can be used to encode knowledge or desirable properties of the
parameters. Typical goals are finding the mode of the posterior θMAP or exploring the full posterior. The former is achieved with
proximal gradient ascent, which encourages gate count reduction. The latter is achieved with stochastic gradient Langevin
dynamics, which can be useful for escaping local optima during training.

function from a reduced number of measurements. Benedetti et al [24] proposes a VQA for inference of
unobserved variables in Bayesian networks. Du et al [25] uses entanglement and ancillary qubits to
implement a quantum prior distribution over the circuit parameters. Going beyond VQAs we also find a
number of quantum algorithms for speeding up Bayesian inference [26, 27] as well as novel Bayesian
quantum causal models [28–30].

In this work, we formulate generic VQAs as a Bayesian inference problem over circuit parameters. We
propose two algorithms that achieve different goals. One searches for the maximum a posteriori point
estimate and automatically removes a given percentage of parameters (quantum gates) to reduce hardware
noise and execution speed. The second approximately samples from the posterior distribution over the
circuit parameters and reduces sensitivity to initialisation and local optima. Our methods make good use of
the gradient of the cost function, which can be estimated from additional measurements on the quantum
computer. An overview of the framework and methods is visualised in figure 1.

This article is structured as follows. In section 2 we introduce the Bayesian perspective for VQAs. In
section 3 we describe the maximum a posteriori approach for a sparsity-inducing Laplace prior. In section 4
we describe stochastic gradient Langevin dynamics (SGLD) for posterior sampling. In section 5 we
numerically investigate the algorithms on instances of weighted max-cut, a transverse field Ising model, and
a generative modelling problem. We also show the benefits of using the Laplace prior with an experiment on
the Quantinuum H1-2 computer. In section 6 we present our concluding remarks and discuss avenues for
future research.

2. A Bayesian perspective

A PQC takes the form U(θ) =
∏K

k=1WkUk([θ]k), where {Wk}Kk=1 is a set of fixed quantum gates, and
{Uk([θ]k)}Kk=1 is a set of parameterised gates. The circuit is applied to some initial quantum state. Let C(θ) be
the cost for the problem at hand as a function of the circuit parameters θ = ([θ]1, . . . [θ]K). For example, the
cost function could be the expectation value C(θ) = Tr[OU(θ)|ψ0⟩⟨ψ0|U(θ)†] of an observable O and initial
state |ψ0⟩. In VQAs a classical optimiser is used in the hope of finding

θMLE = argminθC(θ). (1)

Here we use the subscript to indicate that this quantity is akin to amaximum likelihood estimator (MLE),
as will become apparent. Assuming C(θ) is differentiable, a single iteration of vanilla (stochastic) gradient
descent takes the form

θt = θt−1 − ϵt∇̂θC(θt−1), (2)

where {ϵt}∞t=1 is a schedule of stepsizes and ∇̂θC(θ) is an unbiased estimate of the gradient of the cost
function∇θC(θ) [31, 32].

Now let us consider a probabilistic formulation

π(θ) =
p(θ)exp(−βC(θ))´

p(θ ′)exp(−βC(θ ′))dθ ′
, (3)

2
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and generalised optimisation problem

θMAP = argmaxθπ(θ). (4)

This probabilistic viewpoint instead treats the parameter vector θ as a random variable, and the
denominator in equation (3) ensures π(θ) is a valid probability distribution, i.e.

´
π(θ)dθ = 1. In this light,

we have the following Bayesian interpretation:

• p(θ) represents the prior distribution and can be used to encode any pre-experimental knowledge or desirable
properties for the parameters θ;

• exp(−βC(θ)) is a generalised likelihood term [33, 34] encouraging C(θ) to be small. The parameter β con-
trols the scaling of the cost function with respect to the prior. For statistical and machine learning tasks, the
influence of the data enters through the likelihood term (i.e. C(θ) = C(θ;y) for a dataset y);

• π(θ) represents the posterior distribution and describes high probability regions of the parameter space with
uncertainty quantification.

The maximisation of π(θ) is equivalent to maximisation of logπ (θ) and thus we can take gradients in
log-space

∇θ logπ(θ) =∇θ logp(θ)−β∇θC(θ). (5)

We now observe that when the prior is set to the uniform distribution p(θ)∝ 1, we get∇θ logp(θ) = 0
and θMAP = θMLE from equation (1). Subsequent application of a gradient ascent algorithm regains
equation (2) (where the β parameter is absorbed by the stepsize). Observe that the paradigm shift (going
from minimising a cost function to maximising a posterior distribution) results in a change in terminology,
gradient descent to gradient ascent—although in the case of a uniform prior the implementation is identical.
This gradient ascent approach searches for a so-calledmaximum a posteriori (MAP) estimator, as denoted in
equation (4) and described in generality in algorithm 1 (note the stepsize has been rescaled such that β→∞
regains the maximum likelihood approach, equation (2)).

Algorithm 1. Gradient Ascent.

for t= 1, . . . do

θt = θt−1 + ϵtβ
−1∇θ logp(θt−1)− ϵt∇̂θC(θt−1)

A major success of the Bayesian paradigm is the ability to analyse uncertainty in the parameter θ, that is
to quantify the full posterior π(θ). Unfortunately, aside from trivial cases, the true posterior is intractable
and we have to resort finding an approximation q(θ)≈ π(θ). There then comes a trade-off between quality
of approximation and computational cost. The cheapest approximation is that of the already discussed point
estimate q(θ) = δ(θ | θMAP) where δ is the Dirac point measure, however this approach neglects all
uncertainty in the parameter θ. A more rigorous approach to approximating the posterior is to construct a
Monte Carlo approximation q(θ) = 1

T

∑T
t=1 δ(θ | θt). The most popular methods for constructing this Monte

Carlo approximation [35, 36] do so in a way that is asymptotically unbiased for the posterior, i.e.

q(θ)
T→∞−→ π(θ). Naturally, taking T→∞ is not feasible in practice and instead finite sample sizes are used, a

(controllable) bias is therefore induced. A final approach to approximating the posterior is that of variational
inference [37], where a parameterised variational family of distributions Q= {qω(θ) : ω ∈ Ω} is defined and
then the optimal parameters ω∗ are sought in order to minimise some tractable measure of the discrepancy
between qω(θ) and π(θ) (most commonly the KL divergence). Variational inference is typically
computationally cheaper than the Monte Carlo approach, although induces a bias in the likely case π(θ) /∈ Q
and this bias can be difficult to assess or control.

The Bayesian paradigm also provides a natural approach to characterising predictions, that is through
expectations with respect to the posterior distribution Eπ(θ)[f(θ)]≈ Eq(θ)[f(θ)], where f(θ) is some
predictive function. These predictions are trivial to implement in the case of the point estimate
Eq(θ)[f(θ)] = f(θMAP) and Monte Carlo Eq(θ)[f(θ)] =

1
T

∑T
t=1 f(θt) approximations. In the case of variational

inference, the variational family is often chosen such that Eqω(θ)[f(θ)] is analytically tractable for the
predictive functions of interest.

3
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3. Laplace prior and proximal gradient ascent

A simple and relevant choice of prior is that of the Laplace distribution (independent across parameters)

p(θ)∝ exp

(
−α

K∑
k=1

|[θ]k|

)
,

for α ∈ [0,∞). This choice of prior is also known as LASSO or ℓ1 regularisation [38]. For α large enough it is
known that the resulting MAP estimate enforces [θ]k = 0 for the least influential parameters [38, 39]. In
typical PQCs, the parameter [θ]k represents an angle of a rotational gate and therefore setting [θ]k = 0 is
equivalent to removing the corresponding gate. Removal of parameterised gates may lead to further gate
reductions in a compilation step, e.g. if the removed gate was sandwiched between 2-qubit gates that now
evaluate to the identity (see inset ‘Proximal gradient ascent’ in figure 1).

The non-differentiability of the Laplace prior also means we cannot apply standard gradient techniques.
Specifically, algorithm 1 fails to enforce the parameters to be exactly zero. Fortunately we can utilise
well-studied proximal gradient methods [39]. A single step of proximal gradient ascent takes the form

θt = proxφαϵt (θt−1 − ϵt∇θC(θt−1)) ,

where the proximal operator is defined as [proxφυ (x)]k = argminy
{
φ(y)+ 1

2υ∥[x]k − y∥2
}
. In general the

proximal operator is intractable, however the special case of the Laplace prior φ(y) = ℓ1(y) := |y| can be
solved analytically giving the soft-thresholding function [40]

[proxℓ1υ (θ)]k =


[θ]k − υ, [θ]k > υ,

0, −υ ⩽ [θ]k ⩽ υ,

[θ]k + υ, [θ]k <−υ.
(6)

Proximal gradient ascent has the benefit of explicitly setting parameters [θ]k = 0 when they are
sufficiently small, it is also known to converge to a (local) MAP estimate of
π(θ)∝ exp(−α

∑K
k=1φ([θ]k)−βC(θ)) and at a faster rate than vanilla gradient ascent [39] (which is

regained, for the MLE, by setting α= 0). We note that the influence of the β parameter is absorbed by
rescaling the regularisation parameter α and stepsize εt and can therefore be omitted, as described in
algorithm 2, where we also allow the parameter α= αt to adapt over iterations.

Algorithm 2. Proximal Gradient Ascent.

for t= 1, . . . do

θt = proxφαtϵt
(θt−1 − ϵt∇̂θC(θt−1))

for a Laplace prior, proxφυ (θ) = proxℓ1υ (θ) in equation (6)

There are several potential benefits of the Laplace prior and the subsequent reduction in the number of
gates. Specifically, the resulting VQA benefits from

• Reduced hardware noise;
• Circuits that are faster to sample.

The second point is also applicable to classical neural networks, where weight pruning [41] is used to
reduce time and memory costs at test time.

There may also be trainability benefits in some cases (perhaps mitigating the barren-plateau phenomena
[5] or simpler optimisation via dimension reduction) or better generalisation (by avoiding overfitting) for
machine learning tasks, although this will be very case dependent as is investigated with mixed results in [42]
(where they use weight decay which is equivalent to a Laplace prior without the explicit removal of gates
achieved by proximal gradient ascent).

The downside is that by maximising π(θ) rather than minimising C(θ) directly, we have
C(θMAP)> C(θMLE) when the prior is not uniform. We theoretically find a worse solution, although if the
circuit is deep and α is small, this difference in cost may be negligible.

Additionally, the proximal operator is not tractable in general (the Laplace distribution is a particular
instance where it is [43]). This makes inference difficult for alternative priors such as the spike-and-slab [44]
or horseshoe [45] which theoretically achieve dimensionality reduction with a less significant shift in the
global optima.

4
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In practice, it is difficult to set the regularisation parameter α. It is more intuitive to set a fixed percentage
of the parameters θ = ([θ]1, . . . [θ]K) to be zero and have the algorithm adapt α (or rather αt) accordingly. We
can achieve this at each iteration of proximal gradient ascent by choosing

αt such that
K∑

k=1

I
(∣∣∣[θt− 1

2

]
k

∣∣∣< αtϵt

)
= K0,

where θt− 1
2
= θt−1 − ϵt∇̂θC(θt−1) and K0 ∈ {1, . . . ,K} is the desired number of parameters to be set to 0 and

therefore removed from the circuit. Numerically, this can be done efficiently by setting αt to be the
K0
K th

quantile of {|[θt− 1
2
]k|/ϵt}Kk=1 at each iteration.

4. SGLD

Reducing the entire posterior π(θ) to a single point estimate θMAP will be a poor description of the true
behaviour of the parameter θ unless the posterior is very concentrated. Furthermore, the gradient ascent
algorithm may only succeed in finding a local maximum. A more desirable inference procedure characterises
the entire distribution π(θ).

The most popular classical approaches to posterior quantification build a Monte Carlo approximation
normally either through Metropolis-Hastings based Markov chain Monte Carlo [35] or importance
sampling [36]. Unfortunately both of these techniques require access to pointwise evaluations of π(θ) or at
least, an unbiased estimate [46]. In our setting, we only have unbiased estimates of logπ(θ) and∇θ logπ(θ).
Fortunately, we can adopt the SGLD method of [47] to generate an asymptotically unbiased Monte Carlo
approximation whilst staying entirely in log-space.

Langevin dynamics are described by the following stochastic differential equation

dθt =∇θ logπ(θt)dt+
√
2Wt,

whereW t is a standard Brownian motion. Langevin dynamics are known to admit π(θ) as a stationary
distribution [48]. That is, if we take a sample θt ∼ π(θ) and evolve it exactly according to Langevin dynamics
(for any time period ε) then the marginal distribution of θt+ϵ will also be π(θ). Therefore, simulating
Langevin dynamics exactly and collecting samples along the way will provide a Monte Carlo approximation
of the distribution π(θ).

For non-trivial distributions Langevin dynamics cannot be simulated exactly. Instead, an
Euler-Maruyama discretisation is commonly applied

θt = θt−1 + ϵt∇θ logπ(θt−1)+
√
2ϵtξt, ξt ∼N (ξ | 0,I). (7)

This discretisation will introduce a bias for practical stepsizes ϵt > 0. However, as argued in [47] (and
proved in [49]), as long as the stepsize schedule is chosen to decay to zero

∑∞
t=1 ϵ

2
t <∞ but not too fast∑∞

t=1 ϵt =∞, then the samples will be asymptotically correct for π(θ). It was also noted that this is the case if
∇θ logπ(θ) is replaced with an unbiased estimate, thus obtaining stochastic gradient Langevin dynamics. As a
result, we can use our unbiased gradient estimate (or even a mini-batched version if applicable) within an
SGLD algorithm to obtain a Monte Carlo approximation to the posterior π(θ). The algorithm, described in
algorithm 3, represents a modification of gradient ascent with the correct amount of noise added to ensure
exploration.

Algorithm 3. Stochastic Gradient Langevin Dynamics.

for t= 1, . . . do
ξt ∼N (ξ | 0,I)
θt = θt−1 + ϵtβ

−1∇θ logp(θt−1)− ϵt∇̂θC(θt−1)

+
√
2β−1ϵtξt

There are multiple potential benefits to adding noise to gradient steps in this principled manner.
Specifically, the resulting VQA benefits from

• Transitions between local optima and saddle points, for a suitably chosen β;
• Reduced sensitivity to initialisation;

5
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• By replacing point estimate predictions with ergodic averages over the full trajectory (i.e. 1
T

∑T
t=1 f(θt) for

a prediction function f(θ)), we quantify uncertainty in the parameter θ. This is both conceptually advant-
ageous and can provide enhanced generalisation and a reduced tendency to overfit for machine learning
problems [50].

We also note that, unlike the proximal gradient approach, SGLD is extremely flexible to prior
specification.

On the flip side, SGLD brings an additional parameter to tune, β. Setting β too low will result in noisy
trajectories that do not successfully find low cost regions of the parameter space. Conversely β→∞ regains
vanilla gradient ascent with uniform prior, missing out on the benefits described above. Additionally,
quantifying the posterior (via ergodic averages) is a significantly more challenging computational task than a
simple point estimate and therefore more iterations may be required.

5. Experiments

We now investigate the benefits, drawbacks and parameter sensitivities of the two aforementioned
generalisations of gradient ascent in a selection of VQA experiments. Firstly, we examine an 11 qubit
weighted max-cut problem; secondly, we study the problem of sampling the ground state of an 11 qubit
transverse-field Ising model (TFIM); before finally exploring the statistical task of using an 8 qubit PQC as a
generative model (a so-called quantum Born machine [51]) for a real life, integer data set.

One of the simplest circuit parameterisations is via single-qubit gates Uk([θ]k) = e−i [θ]kVk/2. These are
rotations through angles [θ]k ∈ [0,2π], generated by Hermitian operators Vk with eigenvalues±1. When the
cost function C(θ) can be expressed as the quantum expectation of an Hermitian observable, the partial
derivatives can be evaluated from parameter-shifted circuits (e.g. [52])

[∇θC(θ)]k =
1

2

(
C(θ+ π

2 ek)−C(θ− π
2 ek)

)
,

where ek is the unit vector in the kth direction.
On a quantum device both C(θ) and each [∇θC(θ)]k can be approximated (unbiasedly) by generating

nshots samples from the PQC for each expectation, however for our numerical experiments we make use of
qujax [53] for exact cost and gradient evaluations (i.e. nshots =∞).

All simulations are repeated 20 times with new initial parameters sampled from a small perturbation
around zero, [θ0]k ∼ U([θ]k | −r, r) independently for k= 1, . . . ,K, with r= 10−3. For each experiment we
use a decaying stepsize schedule ϵt = a(t+ b)−

1
3 in line with [49], and set a= 15, b= 10.

5.1. Weighted max-cut
A well-known NP-complete optimisation problem is weighted max-cut. This is the task of taking a graph of
nodes and weighted edges then solving for the optimal binary labelling of the nodes. Say we label each node
as either ‘0’ or ‘1’ with the first node fixed to be ‘0’, then the optimality of the labelling is defined as
maximising the sum of weights on edges between nodes with differing labels. The cost function which we
look to minimise is therefore defined as

C(θ) = Ep(z|θ)[−S(z)],

where z ∈ {0,1}N is a bit string labelling the N + 1 nodes (the zeroth node is labelled 0 by default), and S(z)
is the sum of weights between nodes with differing labels after labelling the graph according to the bit string z
(the jth element of z indicates the label for the jth node).

We map bit strings to measurement operators in the computational basis of N qubits as z→ |z⟩⟨z|. Then,
the probability distribution is given by the Born rule p(z | θ) = |⟨z|U(θ)|0⟩⊗N|2. This arises from the inherent
randomness of the pure quantum state and depends on the parameter values θ. For this experiment, we use
the PQC in figure 2 with N = 11. The experiments are repeated across the 20 random seeds where for each
seed a 3-regular graph (each node has three connected edges) is randomly generated along with associated
weights each sampled uniformly in [0,1].

The top row of figure 3, displays training with a Laplace prior via proximal gradient ascent on shallow
and deep circuits as well as training with a uniform prior via SGLD on a shallow circuit.

We vary the regularisation strength of the Laplace prior by changing the number of parameters set to 0
(and therefore removing gates from the circuit) at each iteration within the adaptive proximal gradient
ascent, section 3. For the shallower circuit (L= 1 layers) we see that the Laplace prior is having a strong
impact, forcing the trained cost to be higher. This is somewhat remedied by using a deeper circuit (L= 7
layers).

6
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Figure 2. PQC used for experiments illustrated for N= 5 qubits. Each Rx and Rz gate is accompanied by a parameter [θ]k,H is the
Hadamard gate and all entangling gates are controlled Z gates (CZ).

Figure 3. Training convergence of presented algorithms on weighted max-cut (top row, 11 qubits), transverse-field Ising model
(middle, 11 qubits) and generative modelling (bottom, 8 qubits) experiments. Proximal gradient ascent with Laplace prior,
adaptive αt with different percentages of parameterised gates automatically removed, and circuit depth L= 1 (left column), L= 7
(middle column), respectively. SGLD with depth L= 1, uniform prior and varying noise levels β (right column). All experiments
are repeated across 20 random seeds with median displayed. Costs are shifted by their true minimum Cmin. Circuit parameters are
initialised with a small perturbation about zero and exact gradients are used (nshots =∞).

In the SGLD plot we use the shallower circuit (L= 1 layers). We observe that vanilla gradient ascent
(β =∞) is getting caught in local optima and that this is avoided by adding a suitable amount of noise in
SGLD (β = 103 and β = 104), however adding too much noise (β = 102) prevents convergence to low cost
regions.

5.2. TFIM
In the second experiment we are tasked with finding the ground state of a TFIM with nearest neighbour
interactions

H=−
N−1∑
i=1

ZiZi+1 − g
N∑
i=1

Xi. (8)

This is a model of quantum magnetism, where g corresponds to the applied transverse field in units of
the Ising coupling strength [54]. For the experiments, we choose N = 11 and generate random TFIM
instances by sampling g∼N (· | 0, 14 ). In the classical limit (g= 0) the ground state is either all spins up or
down, and the system remains in a ferromagnetic phase for |g|< 1. It undergoes a phase transition at a
critical point |g|= 1 and remains in a disordered phase for |g|> 1 [54]. The natural cost function for finding
the ground state of equation (8) with a PQC is

C(θ) = ⟨0|⊗NU(θ)†HU(θ)|0⟩⊗N.

7
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Figure 4. Proximal gradient ascent for finding the ground state of an 11-qubit transverse-field Ising model with a PQC of depth
L= 7. Training cost shifted by true ground state energy (top), adaptation of αt parameter for target of 30% parameterised gates
removed (middle) and paths for two of the parameters [θ]k (bottom). The two parameters (bottom) are chosen to illustrate that
parameters are able to both enter and escape the zero threshold during training.

We run the same setup as in the weighted max-cut experiment and display the training results in the
middle row of figure 3. We again observe severe local optima behaviour in the shallow circuit but this time
the deep circuit successfully trains and finds the ground state even with 30% of the gates removed from the
circuit. We also notice that the addition of noise in SGLD is very effective at escaping the local optima,
although it does not find the exact ground energy, most likely due to the reduced expressivity of the shallow
circuit versus the deep circuit.

For this experiment, we also visualise the adaptation of the Laplace prior regularisation parameter as
described in section 3. In figure 4, for a specific instance of the quantum Hamiltonian we observe that the
regularisation parameter αt quickly becomes large and then decreases as the algorithm converges to low cost
regions of the optimisation landscape, where at each iteration 30% of the parameters are set to zero. We
additionally see that the set of zero parameters changes during training—as some parameters are dragged
within the zero threshold this allows others to leave.

5.3. Generative modelling
In our final experiment, we use the PQC in figure 2 as a generative model (or Born machine) for the 1872
Hidalgo stamp dataset [55]. This dataset, y, represents measurements of the thickness of 485 stamps, on the
µm scale these measurements are integers ranging from 60 µm to 131 µm and thus an 8-qubit generative
model is sufficient to model in the binary expansion. This stamp data is displayed in the histograms on the
top row of figure 5.

The goal of this generative modelling experiment is to drive the samples from the Born machine to be as
close as possible to the true data set. The ideal posterior is p(θ | y)∝ p(θ)

∏485
j=1 p([y]j | θ) where [y]j is a single

datum of the dataset y= {[y]j}485j=1 and p([y]j | θ) is the probability of the Born machine generating said
datum for given parameters θ. Pointwise evaluations of this likelihood p([y]j | θ) are inherently intractable by
the nature of quantum computation, and thus we cannot use it within our cost function. Instead, we utilise a
generalised Bayesian inference framework [56], replacing the true loglikelihood with a two-sample test or
scoring rule [34] that provides a measure of distance between a sample generated by the Born machine and
the true data. In particular, we use themaximum mean discrepancy (MMD) [57, 58]

C(θ) = Ep(z|θ)p(z′|θ)[k(z,z
′)]

− 2Ep(z|θ)ν(z′)[k(z,z
′)]+Eν(z)ν(z′)[k(z,z

′)],

where ν(z) = 1
485

∑485
j=1 δ(z | yj) is the empirical distribution representing the dataset y. Here k(z,z ′) is a

kernel measuring the distance between the integers z and z′, in this experiment we use a Gaussian kernel
k(z,z ′) = exp(−(z− z ′)2/(2σ2)) and set the bandwidth, σ, using the median heuristic [57] applied to the
data y.

The training performance of proximal gradient ascent and SGLD is again plotted on the bottom row of
figure 3. We observe that the deep circuit fits to the data very well and quickly even with 45% of the gates
removed. The shallow circuit takes longer to fit although this is mitigated by the noise in SGLD—perhaps
helping the parameters to more quickly escape a difficult region in the initialisation around zero.
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Figure 5. Distribution of true (top row) and simulated stamp data (bottom rows) sampled fromMMD-trained quantum Born
machines. Proximal gradient ascent with Laplace prior, adaptive αt with different percentages of parameterised gates
automatically removed, and circuit depth L= 1 (left column), L= 7 (middle). SGLD with varying β and circuit depth L= 1
(right column).

Figure 6. Number of CZ gates for the circuit in figure 2, L= 7, when compiled after proximal gradient ascent training for varying
regularisation strength in the generative modelling experiment (8 qubits). Final training cost presented in blue and on right axis.
Results are after 1000 iterations of proximal gradient ascent and are repeated across 20 random initialisations with median
displayed.

In figure 5, we generate a simulated dataset of 103 samples using converged parameters and visually
compare with the true data. We observe that the Laplace prior approach has fitted the data well with up to
30% of the gates removed in the shallow circuit, and up to 45% for the deep circuit. For the SGLD
parameters, we take a different approach where we simulate our dataset by taking 100 samples from each
parameter along the training trajectory (after discarding a burn-in of 400 samples), so-called ergodic
averages. We observe that this approach provides an implicit regularisation and produces consistent
simulated data even in the large noise setting β = 103.

In figure 6, we depict the number of CZ gates that are cancelled out during compilation of the circuit in
figure 2 due to the regularisation of the Laplace prior and subsequent removal of Rx and Rz gates. We see that
a significant proportion of CZ gates are removed when more than 40% of the number of the rotational
parameters are removed although when more than 50% are removed we start to take a hit and suffer poorer
performance on the trained cost.

Finally, in figure 7, we take two instances of the trained circuits with depth L= 7 and compare the
sampling cost and hardware noise on the Quantinuum H1-2 trapped-ion quantum computer [59] after
compiling via tket [60]. Observe that the circuit with 45% of paramterised gates removed is significantly
cheaper and less noisy than its full parameter equivalent. We also remark that these benefits are multiplied by
a factor of 2K in each gradient calculation if we employ the parameter shift rule.

9
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Figure 7. Runtime credits (a proxy for execution time) and total variation distance for experiments on the Quantinuum H1-2
quantum computer (1000 shots) for 0% and 45% of parameterised gates automatically removed by the proximal gradient ascent
algorithm. Total variation distance is measured from the expected sampling distribution with no hardware noise. Circuits are
compiled for and run on H1-2 after training on a simulator. These two circuits provide equivalent MMD performance as seen in
figures 3, 5 and 6. Results are averaged over 5 independent hardware runs.

6. Discussion

In this article we have described a very general Bayesian framework for the probabilistic treatment of
variational quantum circuits. By considering the probability distribution π(θ)∝ p(θ)exp(−βC(θ)) we
generalise the existing optimisation framework as a special case where a uniform prior p(θ)∝ 1 is used
implicitly and gradient ascent techniques are applied to find a maximum a posteriori estimate
θMAP = argmaxθπ(θ). We move beyond the uniform prior and show how a Laplace distribution can be used
to enforce customisable levels of sparsity in the parameter θMAP. This dimension reduction has benefits
including faster sampling and reduced hardware noise, as well as potential trainability benefits for large
problems. We additionally detail how to generate a Monte Carlo approximation that is asymptotically
unbiased for the posterior π(θ) via an application of SGLD. A characterisation of the posterior beyond a
point estimate is highly desirable for landscapes exhibiting complex contours and local optima, as
demonstrated by the weighted max-cut and transverse field Ising model experiments.

This Bayesian perspective leaves many questions for future research, of which we will describe a few here.
Both of the described inference algorithms bring with them an additional tuning parameter, the

regularisation strength α in the case of proximal gradient ascent and the level of noise added β in the case of
SGLD. We described an adaptive method for the regularisation strength α, however this approach simply
helps via the intuitive nature of deciding a priori how many parameters to remove, leaving an alternative
tuning parameter. Another approach would be to put a prior (such as a gamma or log-normal distribution)
on α or β and include them in the inference procedure.

An extremely successful modification of gradient descent in the case of stochastic gradients is the
addition of momenta [61, 62]. Indeed, a compelling future direction is the extension to proximal gradient
ascent with momenta [63] and the sampling analogue of momenta, underdamped Langevin dynamics
[64, 65]. Whilst there is also the opportunity to incorporate second-order information into the Bayesian
inference regimes via the use of a preconditioner [39, 48].

Additionally, we have only investigated point estimate and Monte Carlo approximations to the posterior.
A natural next step would be to consider a variational inference approach [37], although care would need to
be taken when constructing a variational family of distributions that are well-defined for angular parameters.

The posterior π(θ) represents an instance of generalised Bayesian inference [33, 56], there are indeed
alternative posterior formulations providing a probabilistic interpretation of uncertainty over θ. A
particularly compelling alternative approach corresponds to approximate Bayesian computation (e.g. [66])
which has desirable asymptotics and permits a Metropolis-Hastings accept-reject step. This approach is
expanded on in appendix and represents a significant reformulation of the cost function and inference
procedure although remains an intriguing future direction nonetheless.

One of the major concerns for the utility of VQAs is that of trainability in large circuits and the so-called
barren plateau phenomenon [5] where the gradients of randomly initialised circuits vanish exponentially as
the number of qubits increases. It is a natural question to consider whether the choice of prior can mitigate
the barren plateau phenomenon either via automatic dimension reduction of the Laplace prior or by
introducing correlations amongst parameters [67] via e.g. a (correlated) von Mises prior distribution [68].

10
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A significant motivation for regularisation in classical statistics and machine learning is that of
generalisation. ℓ1 regularisation (without the proximal approach) is investigated for quantum supervised
learning with preliminary mixed results in [42], it would be intriguing to investigate whether alternative
priors could help quantum circuits avoid overfitting. In the same vein, classical Bayesian deep learning [69]
(where the posterior samples are preferred over a point estimate) represents a compelling approach to
improving generalisation, strongly motivating the extension of the quantum Bayesian learning framework
described here to supervised learning.
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Appendix. A note on approximate Bayesian computation

A suitably decaying stepsize schedule is one approach to correct for the discretisation error in the Langevin
proposal (7). Another possibility is to keep the stepsize constant and apply a Metropolis-Hastings
accept-reject step, where a sample from a proposal distribution q(θ ′ | θt−1) is accepted θt = θ ′ with
probability

αt =min(1, rt), where rt =
π(θ′)q(θt−1 | θ′)
π(θt−1)q(θ′ | θt−1)

,

otherwise the previous is duplicated θt = θt−1.
The π(θ) evaluations within rt only need to be up to normalising constant and can even be replaced with

an unbiased estimate [46]. However, in the present formulation (3) we only have access to unbiased estimates
of the (unnormalised) log density logp(θ)−βC(θ), which cannot be easily translated into an unbiased
estimate of the required p(θ)exp(−βC(θ)).

An alternative formulation instead works directly in the density space. Denote the quantum circuit as a
conditional distribution p(z | θ) and a weighting function k(z) that is large when the output z is
accurate/desirable and small when z is inaccurate/undesirable. Note that we cannot evaluate p(z | θ) but can
extract unbiased estimates for quantities of the form Ep(z|θ)[ f(z)] and∇θEp(z|θ)[f(z)]. This formulation falls
within the field of approximate Bayesian computation (ABC) [66] where we target the extended distribution

πABC(θ,z)∝ p(θ)p(z | θ)k(z).

Discarding the simulated output z amounts to marginalisation

πABC(θ)∝
ˆ

p(θ)p(z | θ)k(z)dz,

∝ p(θ)Ep(z|θ)[k(z)].

The extended distribution permits a Metropolis-Hastings step [46] and a Langevin proposal, although
the Langevin proposal requires the gradient

∇θ logπABC(θ) =∇θ logp(θ)+∇θ logEp(z|θ)[k(z)],

=∇θ logp(θ)+
∇θEp(z|θ)[k(z)]

Ep(z|θ)[k(z)]
,

which differs from (5).
In statistics or machine learning settings, e.g. section 5.3, we have k(z) = k(z,y) encouraging the output z

to be similar to a given dataset y. Here πABC(θ) has the desirable property that as k(z,y)→ δ(z | y) we get
πABC(θ)→ p(θ | z)∝ p(θ)p(z | θ) which is in some sense the ideal posterior. ABC targets an extended
distribution and this has largely limited the approach to low dimensional settings, however this could be
mitigated by the use of the gradients above (ABC is usually gradient-free) or by accepting a bias [70].
However, this alternative ABC formulation loses the seamless transition from existing optimisation-based
VQAs, algorithm 1; a numerical investigation into πABC(θ) is therefore left for future work.
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