

International Journal of Plant & Soil Science

Volume 36, Issue 7, Page 377-392, 2024; Article no.IJPSS.117917 ISSN: 2320-7035

Nitrogen Management in *Kharif* Pearlmillet

Patel, J. R. ^{a*}, Patel, D. M. ^{a#} and Desai, J. S. ^{a†}

^a Department of Agronomy, C. P. College of Agriculture, Sardarkrushinagar Dantiwada Agricultural University, Sardarkrushinagar, Banaskantha, Gujarat- 385 506, India.

Authors' contributions

This work was carried out in collaboration among all authors. All authors read and approved the final manuscript.

Article Information

DOI: https://doi.org/10.9734/ijpss/2024/v36i74743

Open Peer Review History:

This journal follows the Advanced Open Peer Review policy. Identity of the Reviewers, Editor(s) and additional Reviewers, peer review comments, different versions of the manuscript, comments of the editors, etc are available here: https://www.sdiarticle5.com/review-history/117917

Original Research Article

Received: 03/04/2024 Accepted: 08/06/2024 Published: 11/06/2024

ABSTRACT

An experiment was conducted during *kharif*season of the years 2021 to 2023 (Three years) at Agronomy Instructional Farm, Chimanbhai Patel College of Agriculture, Sardarkrushinagar Dantiwada Agricultural University, Sardarkrushinagar having loamy sand soil to study the Nitrogen management in *kharif* pearlmillet. The experiment was laid out in randomized block design and replicated four times with seven treatments. On three years pooled results application of 80 kg N/ha being at par with 75% RDN as chemical fertilizer in addition with 25% RDN through castor cake or vermicompost or FYM recorded significantly higher plant height at 60 DAS, at harvest, length of earhead over rest of treatments. Further, it also significantly increased seed yield (1631 kg/ha) and stover yield (3754 kg/ha). Maximum net realization and benifit : cost ratio (BCR) were registered with application of 80 kg N/ha as chemical fertilizer followed by 75 % RDN as chemical fertilizer + 25 % RDN through castor cake in pooled results. Higher yield and net realization can be secured with the application of either 100% RDN (Recommended Dose of Nitrogen) i.e. 80 kg/ha

Professor and Head;

Cite as: J. R., Patel, Patel, D. M., and Desai, J. S. 2024. "Nitrogen Management in Kharif Pearlmillet". International Journal of Plant & Soil Science 36 (7):377-92. https://doi.org/10.9734/ijpss/2024/v36i74743.

⁺⁺ Assistant Professor;

[†] Ph. D. Scholar;

^{*}Corresponding author: E-mail: janak15688@sdau.edu.in;

through chemical fertilizer + 25 % RDN through castor cake or vermicompost (20 kg N/ha) in addtion to recommend dose of phosphourus 40 kg/ha as basal under North Gujarat Agro climatic conditions.

Keywords: Pearlmillet; castor cake; vermicompost; RDF; FYM; Nitrogen.

1. INTRODUCTION

"Pearlmillet (Pennisetum glaucum L.) is major coarse grain crop among the all grains and considered to be a poor man's food. It belongs to the gramineae family and widely grown in Africa and Asia since pre-historic times. Being a lowpricedgrain, it is mainly consumed by middle and poor-class families. Particularly in Asia, pearl millet is an important cereal crop of India, Pakistan, China and southeastern Asia. Pearl millet is one of the important millet crops which flourish well even under the adverse condition of weather in country like India with the most drought-tolerant crop among cereals and millets" [1-3]. "Pearl millet is adopted instresses intensive conditions, yet it is highly versatile, input responsive and high-quality cereal with great potential to become a valuable component of anon-traditional season like summer under irrigated and high input management conditions. The nutritive value of the pearl millet crop is fairly high. It contains moisture (12.4%), protein (11.6%), fat (5%), carbohydrates (67%) and minerals (2.7%). It is also rich in Vit-A, Vit-B and imparts substantial energy (360 calories 100 g⁻¹) for the baby" [4]. "Pearl millet imparts substantial energy to the human body with easy digestibility. In addition to grains, it also supplies fair-quality dry fodder in large bulk. The crop is more successfully grown in the tract having well distributed and low rainfall with few cloudy days. Pearl millet grains are eaten cooked like wheat or "chapaties" prepared out of flour like maize or sorghum flour. In India, Pearl millet popularly known as bajra or bajri, is an important staple food and also occupies an important place in the daily diet of many classes of people in India. India ranks first both in areas and production of pearl millet, it is cultivated over an area of 7.11 million hectares with a production of 8.66 million tonnes and the productivity is 1219 kg ha^{-1"} [5]. "Pearl millet cultivation is dispersed mainly during the *kharif* season across the country. In Gujarat, pearlmillet occupies an area of 0.39 million hectares and production of 0.89 million tonneswith the productivity of 2280 kg ha-1" [5]. "Summer cultivation of pearlmillet in the irrigated areas of North Gujarat has got importance because of the assurance of targeted crop yield.

The application of organic manures viz., FYM and castor cake may serve the source of major (N, P and K) and micronutrients (Fe, Mo and Zn etc.). Addition of organic manure in the soil is not only act as source of nutrient, but also influences its availability. It improves physical and chemical properties and health of soil such as aggregation, aeration, permeability, water holding capacity, slow release of nutrients, increase in Cation Exchange Capacity (CEC), stimulation of soil flora and fauna etc. On an average, FYM contains 0.5 % N, 0.17 % P₂O₅ and 0.55 % K₂O. Castor cake is not used as animal feed as it contains a toxic alkaloids ricinine and ricin. It widely used as concentrated organic manure. Castor cake also supply micronutrients, improve physical properties of soil, immobilize toxic elements like AI and promote Mo activity" [6]. It is a long-term sustainable perspective and should not be thought for a short-term gain.

2. MATERIALS AND METHODS

An experiment was conducted during kharif season of the years 2021, 2022 and 2023 (Three vears) Agronomy Instructional Farm. at College Chimanbhai Patel of Agriculture, Sardarkrushinagar Dantiwada Agricultural University, Sardarkrushinagar having loamy sand soil to study the nitrogen management in kharif pearl millet. The experiment was laid out in randomized block design and replicated four times with seven treatments viz., T1: RDN @ 80 kg N/ha as chemical fertilizer, T₂: 75% RDN as chemical fertilizer + 25% RDN through FYM, T₃: 75% RDN as chemical fertilizer + 25% RDN through vermicompost, T₄: 75% RDN as chemical fertilizer + 25% RDN through castor cake, T₅: 50% RDN as chemical fertilizer + 25% RDN through FYM + Biofertilizer (Azatobacter + PSB), T₆: 50% RDN as chemical fertilizer + 25% RDN through vermicompost + Biofertilizer (Azatobacter + PSB) and T_7 : 50% RDN as chemical fertilizer + 25% RDN through castor cake + Biofertilizer (Azatobacter + PSB). Pearl millet variety GHB-558 was used as test crop. The soil of experimental field was loamy sand in texture. Pearl millet seeds (3.75 kg/ha) were sown at a row distance of 45 cm and 10 cm plant to plant distance. Various growth and yield

attributing characters of the crop were measured and studied during the course of investigations. Other management practices were followed as recommended. In addition recommended dose of phosphorus (P2O5) was applied commonly 40 kg/ha in all the treatments as basal dose while application of Azatobacter & PSB was applied @ 1 lit./ha as soil application along with 100 kg FYM in Treaments T₅, T₆ and T₇. Statistical analysis of the data of various characters studied in present investigation was carried out with the help of computer as per appropriate procedure suggested by Panse and Sukhatme (1985) for the design of experiment.

3. RESULTS and DISCUSSION

3.1 Effect on Growth, Yield Attributes and Yield (Pooled)

The pooled data presented in Table 1 revealed that plant population at 20 DAS and at harvest was not affected significantly by the different nitrogen management practices. Pooled data of three years on plant height (cm) of pearl millet at 30 DAS, 60 DAS and at harvest are presented in Table 2. The data revealed that significantly taller plant height at 60 DAS and at harvest was observed under treatment T1(RDN @ 80 kg/ha as chemical fertilizer) which remained at par with treatment T₄ (75% RDN as chemical fertilizer + 25% RDN through castor cake), T₃ (75% RDN as fertilizer 25% RDN through chemical + vermicompost) and T₂ (75% RDN as chemical fertilizer + 25% RDN through FYM). The data presented in Table 3 indicated that use of different nitrogen management had significant effect on length of earhead. Application of RDN @ 80 kg/ha as chemical fertilizer (T₁) recorded significantly taller earhead (20.53 cm) but remained at par with treatment T₄ (75% RDN as chemical fertilizer + 25% RDN through castor cake i.e. 19.56 cm), T₃ (75% RDN as chemical fertilizer + 25% RDN through vermicompost i.e. 19.53 cm) treatment and T_2 (75% RDN as chemical fertilizer + 25% RDN through FYM i.e. 18.81 cm). Pooled data on test weight and number of grain per earhead are presented on Table 3 was found non-significant.lt might be attributed to multifarious role of castor cake and FYM in terms of nutrients supply as well as improvement in physical, chemical and biological properties of soil which finally reflected on growth of plant. The better growth of plant resulted into increased in plant height. The findings are in agreement with those reported by Tomar [7], Singh and Chauhan [8] Chaudhary et al. [9], Alsamowal et al. [10], Krishnaprabu [11] and Bhutadiya et al. [12].

The data on grain yield are presented in Table 4 indicated that application of different nitrogen management had significant effect on grain and stover yield of pearl millet. Application of RDN @ 80 kg/ha as chemical fertilizer (T1) recorded significantly higher grain (1631 kg/ha) yield and it was remained at par with Treatment T_3 (75%) RDN as chemical fertilizer + 25% RDN through vermicompost *i.e.* 1481 kg/ha) and T₄ (75% RDN as chemical fertilizer + 25% RDN through castor cake *i.e.* 1472 kg/ha). "Significantly higher grain yield of pearl millet obtained with organic sources viz., castor cake and vermicompost provide essential nutrients to crop for growth and development. Though, organic manures having low content of nutrients, but when applied them with higher dose they are able to fulfill required major and minor nutrients. Supplementation of nutrients along with better soil physical condition at higher rate of both organic manure increased plant height and length of ear head which resulted into higher grain yield per hectare" [13]. The findings closely followed the results of Tomar [7], Singh and Chauhan [8], Chaudhary et al. [9], Alsamowal et al. [10], Krishnaprabu [11] and Bhutadiya et al. [12].

The data presented in Table 4 indicated that stover yield recorded significantly higher in treatment T₁ (RDN @ 80 kg/ha as chemical fertilizer) which was remained at par with treatment T₄ (75% RDN as chemical fertilizer + 25% RDN through castor cake), treatment T_3 (75% RDN as chemical fertilizer + 25% RDN through vermicompost) and treatment T₂ (75% RDN as chemical fertilizer + 25% RDN through FYM). Increase in straw yields was mainly because of increase in plant height and length of earhead which resulted from of castor cake that provided balanced nutrition, favourable soil environment and ultimately leads to maximum stover yields. The findings closely followed the results of Tomar [7], Singh and Chauhan [8] Chaudhary et al. [9], Alsamowal et al. [10], Krishnaprabu [11] and Bhutadiya et al. [12]

3.2 Economics

Economics of different treatments (Table 5) showed that maximum gross (Rs 55467/ha) and net return (Rs 22177/ha) with BCR of 1.67 was recorded with treatment T_1 (application of RDN @ 80 kg/ha as chemical fertilizer) followed by treatment T_4 (75% RDN as chemical fertilizer + 25% RDN through castor cake) in pooled results.

Treatments	_	Pla	ant pop	ulation pe	er metr	e row l	ength	
		lr	nitial			At h	narvest	
	2021	2022	2023	Pooled	2021	2021	2023	Pooled
T ₁ : RDN @ 80 kg/ha as chemical fertilizer	9.66	9.25	9.46	9.46	8.93	8.79	9.08	8.93
T ₂ : 75% RDN as chemical fertilizer + 25% RDN through FYM	9.43	9.15	9.39	9.32	8.96	8.69	9.01	8.89
T ₃ : 75% RDN as chemical fertilizer + 25% RDN through vermicompost	9.54	9.38	9.42	9.45	9.07	8.91	9.04	9.01
T ₄ : 75% RDN as chemical fertilizer + 25% RDN through castor cake	9.47	9.32	9.52	9.44	9.01	8.85	9.14	9.00
T ₅ : 50% RDN as chemical fertilizer + 25% RDN through FYM + Biofertilizer (Azatobacter + PSB)	9.41	9.36	9.30	9.36	8.94	8.89	8.65	8.83
T ₆ : 50% RDN as chemical fertilizer + 25% RDN through vermicompost + Biofertilizer (<i>Azatobacter</i> + PSB)	9.76	9.29	9.56	9.54	9.27	8.83	8.89	9.00
T ₇ : 50% RDN as chemical fertilizer + 25% RDN through castor cake + Biofertilizer (<i>Azatobacter</i> + PSB)	9.57	9.22	9.20	9.33	9.09	8.76	8.55	8.80
S.Em. ±	0.37	0.33	0.36	0.35	0.33	0.34	0.33	0.33
C.D. at 5%	NS	NS	NS	NS	NS	NS	NS	NS
CV %	7.69	7.20	7.56	7.49	7.23	7.62	7.35	7.40

Table 1. Effect of different nitrogen management treatments on initial and final plant population of kharif pearlmillet

Treatments	Plant height (cm)											
	At 30	DAS			At 60 D	AS			At har	vest		
	2021	2022	2023	Pooled	2021	2021	2023	Pooled	2021	2022	2023	Pooled
T ₁ : RDN @ 80 kg/ha as chemical fertilizer	57.20	44.93	53.35	51.82	143.04	136.1	140.6	139.9	184.5	163.0	178.4	175.3
T_2 : 75% RDN as chemical fertilizer + 25% RDN	55.08	43.42	50.93	49.80	138.14	132.2	135.0	135.1	177.6	153.4	170.7	167.3
T_3 : 75% RDN as chemical fertilizer + 25% RDN	55.36	42.38	51.06	49.59	138.85	129.5	135.5	134.6	178.5	154.3	171.2	168.1
through vermicompost												
T ₄ : 75% RDN as chemical fertilizer + 25% RDN through castor cake	54.01	43.74	52.09	49.94	135.68	133.0	137.7	135.4	174.2	158.5	174.4	169.0
T ₅ : 50% RDN as chemical fertilizer + 25% RDN through FYM + Biofertilizer (<i>Azatobacter</i> + PSB)	50.20	38.52	44.82	44.51	122.26	115.5	118.7	118.8	155.5	133.3	148.0	145.6
T_6 : 50% RDN as chemical fertilizer + 25% RDN through vermicompost + Biofertilizer (<i>Azatobacter</i>	52.06	39.07	46.35	45.82	126.57	116.9	122.4	121.6	161.5	135.3	153.1	149.9
T ₇ : 50% RDN as chemical fertilizer + 25% RDN through castor cake + Biofertilizer (<i>Azatobacter</i> + PSB)	50.70	40.16	47.63	46.16	123.48	119.8	125.2	122.8	157.1	139.4	157.0	151.2
S.Em. ±	2.20	1.60	2.04	1.96	4.74	5.21	5.19	5.04	7.09	7.5	7.21	7.27
C.D. at 5%	NS	NS	NS	NS	14.08	15.47	15.42	14.14	21.07	22.3	21.43	20.36
CV %	8.21	7.67	8.23	8.13	7.15	8.26	7.94	7.78	8.35	10.10	8.76	9.02

Table 2. Effect of different nitrogen management treatments on periodical plant height of kharif pearlmillet

Table 3. Effect of different nitroo	ien management treatments on leng	th of earhead, test weig	ht and number of grain	per earhead of <i>kharif</i>	pearlmillet

Treatments	Length of earhead (cm)			Test v	weight	(g)		Number of grain per earhead				
	2021	2022	2023	Pooled	2021	2022	2023	Pooled	2021	2022	2023	Pooled
T ₁ : RDN @ 80 kg/ha as chemical fertilizer	21.68	19.12	20.77	20.53	7.48	7.02	7.42	7.30	1965	1714	1827	1834
T ₂ : 75% RDN as chemical fertilizer + 25% RDN through FYM	19.77	17.17	19.48	18.81	7.33	7.07	7.36	7.25	1676	1464	1659	1600
T ₃ : 75% RDN as chemical fertilizer + 25% RDN through vermicompost	20.95	17.99	19.66	19.53	7.16	7.16	7.14	7.15	1894	1531	1673	1699
T ₄ : 75% RDN as chemical fertilizer + 25% RDN through castor cake	20.31	18.35	20.02	19.56	7.20	6.83	6.98	7.01	1757	1655	1716	1707
T₅: 50% RDN as chemical fertilizer + 25% RDN through FYM + Biofertilizer (<i>Azatobacter</i> + PSB)	16.91	14.49	17.23	16.21	7.02	7.21	7.18	7.13	1389	1212	1350	1316
T_6 : 50% RDN as chemical fertilizer + 25% RDN through vermicompost + Biofertilizer (<i>Azatobacter</i> + PSB)	18.10	14.57	17.22	16.63	7.14	7.03	7.02	7.06	1486	1296	1422	1400
T ₇ : 50% RDN as chemical fertilizer + 25% RDN through castor cake + Biofertilizer (<i>Azatobacter</i> + PSB)	17.43	15.25	18.03	16.90	6.93	6.98	7.23	7.04	1512	1317	1526	1450
S.Em. ±	0.86	0.79	0.87	0.84	0.22	0.22	0.23	0.13	145.91	118.62	150.42	135.60
C.D. at 5%	2.56	2.34	2.58	2.35	NS	NS	NS	NS	NS	NS	NS	NS
CV %	8.94	9.43	9.18	9.18	6.16	6.24	6.53	6.31	17.49	16.30	18.85	17.24

Treatments	Grain yield (kg/ha)					yield (k	g/ha)		Harvest Index (%)				
	2021	2022	2023	Pooled	2021	2022	2023	Pooled	2021	2022	2023	Mean	
T ₁ : RDN @ 80 kg/ha as chemical fertilizer	1999	1416	1574	1631	4943	2923	3297	3754	28.80	32.06	32.68	31.18	
T ₂ : 75% RDN as chemical fertilizer + 25% RDN through FYM	1403	1202	1341	1334	4349	2659	2895	3334	24.39	31.63	32.08	29.37	
T ₃ : 75% RDN as chemical fertilizer + 25% RDN through vermicompost	1811	1241	1392	1481	4712	2718	2920	3483	27.76	31.35	32.28	30.46	
T ₄ : 75% RDN as chemical fertilizer + 25% RDN through castor cake	1528	1384	1504	1472	4486	2884	3115	3528	25.41	32.42	32.56	30.13	
T ₅ : 50% RDN as chemical fertilizer + 25% RDN through FYM + Biofertilizer (<i>Azatobacter</i> + PSB)	1044	976	1057	1076	3829	2195	2569	2897	21.42	32.42	30.61	28.15	
T ₆ : 50% RDN as chemical fertilizer + 25% RDN through vermicompost + Biofertilizer (<i>Azatobacter</i> + PSB)	1292	989	1083	1174	4246	2241	2610	3065	23.34	32.32	30.79	28.82	
T ₇ : 50% RDN as chemical fertilizer + 25% RDN through castor cake + Biofertilizer (<i>Azatobacter</i> + PSB)	1138	1044	1196	1178	4065	2420	2797	3127	21.87	31.81	31.18	28.29	
S.Em. ±	132.0	82.7	98.9	102.8	230.8	167.6	159.4	188.7					
C.D. at 5%	392.3	245.7	293.9	287.8	685.8	497.9	473.7	528.3					
CV %	11.47	14.03	15.14	15.39	10.31	13.01	11.05	11.39					

Table 4. Effect of different nitrogen management treatments on grain yield, straw yield and Harvest Index of kharif pearlmillet

Treatments	Grain yield (kg/ha)	Straw yield (kg/ha)	Cost of cultivation (₹/ha)	Gross return (₹/ha)	Net return (₹/ha)	BCR
T1: RDN @ 80 kg/ha as chemical fertilizer	1631	3754	33291	55467.5	22177	1.67
T ₂ : 75% RDN as chemical fertilizer + 25% RDN through FYM	1334	3334	39826	46685	6859	1.17
T ₃ : 75% RDN as chemical fertilizer + 25% RDN through vermicompost	1481	3483	43675	50737.5	7062	1.16
T ₄ : 75% RDN as chemical fertilizer + 25% RDN through castor cake	1472	3528	39498	50760	11262	1.29
T₅: 50% RDN as chemical fertilizer + 25% RDN through FYM + Biofertilizer (<i>Azatobacter</i> + PSB)	1076	2897	39865	38695	-1170	0.97
T ₆ : 50% RDN as chemical fertilizer + 25% RDN through vermicompost + Biofertilizer (<i>Azatobacter</i> + PSB)	1174	3065	43715	41740	-1975	0.95
T ₇ : 50% RDN as chemical fertilizer + 25% RDN through castor cake + Biofertilizer (<i>Azatobacter</i> + PSB)	1178	3127	39290	42140	2850	1.07

Table 5. Economics as influenced by different nitrogen management treatments

Table 6 Effect of different pitr	agon managament treatments on	D and K agntant in	arain of kharifnoorl millot
	Syen management treatments on	N, F and K Content in	grain of knarn pean miller

Treatments	N con	tent in g	rain (%))	P cont	ent in g	rain (%)		K content in grain (%)			
	2021	2022	2023	Pooled	2021	2022	2023	Pooled	2021	2022	2023	Pooled
T ₁ : RDN @ 80 kg/ha as chemical fertilizer	1.338	1.336	1.414	1.36	0.256	0.329	0.222	0.269	0.512	0.428	0.433	0.457
T ₂ : 75% RDN as chemical fertilizer + 25% RDN through FYM	1.383	1.351	1.414	1.38	0.271	0.320	0.195	0.262	0.474	0.420	0.417	0.437
T_3 : 75% RDN as chemical fertilizer + 25% RDN through vermicompost	1.415	1.424	1.379	1.41	0.259	0.327	0.214	0.267	0.512	0.424	0.432	0.456
T ₄ : 75% RDN as chemical fertilizer + 25% RDN through castor cake	1.460	1.420	1.316	1.39	0.264	0.323	0.216	0.268	0.541	0.427	0.441	0.469
T_5 : 50% RDN as chemical fertilizer + 25% RDN through FYM + Biofertilizer (<i>Azatobacter</i> + PSB)	1.495	1.413	1.365	1.42	0.277	0.332	0.210	0.273	0.535	0.436	0.417	0.462
T ₆ : 50% RDN as chemical fertilizer + 25% RDN through vermicompost +Biofertilizer (<i>Azatobacter</i> + PSB)	1.450	1.403	1.365	1.40	0.256	0.326	0.206	0.263	0.553	0.424	0.420	0.465
T ₇ : 50% RDN as chemical fertilizer + 25% RDN through castor cake + Biofertilizer (<i>Azatobacter</i> + PSB)	1.488	1.353	1.288	1.37	0.276	0.325	0.213	0.271	0.527	0.412	0.421	0.453
S.Em. ±	0.081	0.036	0.055	0.060	0.010	0.004	0.009	0.008	0.029	0.005	0.005	0.017
C.D. at 5%	NS	NS	NS	NS	NS	NS	NS	NS	NS	0.014	0.016	NS
CV %	11.33	5.19	8.11	8.66	7.74	2.67	8.49	6.17	10.96	2.14	2.49	7.44

Table 7. Effect of different nitrogen management treatments on N, P and K uptake by grain of kharif pearl millet

Treatments	N upta	ike by g	rain (kg	/ha)	P upta	ike by g	rain (kg	/ha)	K uptake by grain (kg/ha)				
	2021	2022	2023	Pooled	2021	2022	2023	Pooled	2021	2022	2023	Pooled	
T ₁ : RDN @ 80 kg/ha as chemical fertilizer	26.79	18.28	21.74	22.27	5.14	4.50	3.38	4.34	10.28	5.84	6.62	7.58	
T ₂ : 75% RDN as chemical fertilizer + 25% RDN	19.27	16.65	19.34	18.42	3.79	3.93	2.66	3.46	6.62	5.17	5.70	5.83	
through FYM													
T_3 : 75% RDN as chemical fertilizer + 25% RDN	26.10	17.68	19.18	20.99	4.66	4.06	2.98	3.90	9.24	5.26	6.02	6.83	
through vermicompost													
T ₄ : 75% RDN as chemical fertilizer + 25% RDN	22.29	19.56	19.79	20.55	4.03	4.47	3.26	3.92	8.25	5.90	6.63	6.92	
through castor cake													
T_5 : 50% RDN as chemical fertilizer + 25% RDN	15.63	14.88	15.42	15.31	2.88	3.49	2.397	2.92	5.54	4.59	4.72	4.95	
through FYM + Biofertilizer (Azatobacter +													
PSB)													
T_6 : 50% RDN as chemical fertilizer + 25% RDN	18.62	14.86	15.89	16.46	3.32	3.48	2.400	3.07	6.89	4.54	4.88	5.43	
through vermicompost +Biofertilizer													
(Azatobacter + PSB)	40.07	45.04	40.40	40.40	0.45	0.00	0.74	0.47		4.05			
1 ₇ : 50% RDN as chemical fertilizer + 25% RDN	16.87	15.24	16.43	16.18	3.15	3.66	2.71	3.17	5.96	4.65	5.36	5.32	
through castor cake + Biofertilizer (Azatobacter													
<u>+ PSB)</u>											- 10	- 10	
S.Em. ±	2.39	1.06	1.52	1.66	0.38	0.28	0.23	0.30	0.65	0.36	0.40	0.49	
C.D. at 5%	7.11	3.15	NS	4.89	1.12	NS	0.683	0.847	1.940	NS	1.174	1.364	
CV %	23.01	12.66	16.61	17.43	19.56	14.32	16.27	17.08	17.320	14.02	13.854	15.90	

Table 8. Effect of different nitrogen management treatments on N, P and K content in straw of *kharif* pearl millet

Treatments	N con	tent in s	traw (%)	P cont	tent in s	traw (%)	K content in straw (%)			
	2021	2022	2023	Pooled	2021	2022	2023	Pooled	2021	2022	2023	Pooled
T ₁ : RDN @ 80 kg/ha as chemical fertilizer	0.759	1.081	0.788	0.876	0.164	0.217	0.126	0.169	1.693	1.753	1.846	1.76
T ₂ : 75% RDN as chemical fertilizer + 25% RDN	0.797	0.953	0.788	0.846	0.161	0.231	0.137	0.176	1.688	1.538	1.553	1.59
through FYM												
T ₃ : 75% RDN as chemical fertilizer + 25% RDN	0.802	0.924	0.711	0.812	0.168	0.228	0.118	0.171	1.763	1.538	1.606	1.63
through vermicompost												
T ₄ : 75% RDN as chemical fertilizer + 25% RDN	0.771	0.980	0.774	0.842	0.167	0.236	0.107	0.170	1.775	1.568	1.855	1.73
through castor cake												
T ₅ : 50% RDN as chemical fertilizer + 25% RDN	0.791	1.001	0.731	0.840	0.163	0.267	0.123	0.184	1.830	1.440	1.821	1.69
through FYM + Biofertilizer (Azatobacter + PSB)												
T ₆ : 50% RDN as chemical fertilizer + 25% RDN	0.789	1.016	0.711	0.838	0.159	0.210	0.114	0.161	1.715	1.859	1.677	1.75
through vermicompost + Biofertilizer (Azatobacter +												
PSB)												
T ₇ : 50% RDN as chemical fertilizer + 25% RDN	0.818	0.997	0.756	0.857	0.171	0.217	0.116	0.168	1.788	1.753	1.949	1.83
through castor cake + Biofertilizer (Azatobacter +												
PSB)												
S.Em. ±	0.045	0.031	0.057	0.045	0.006	0.015	0.014	0.012	0.055	0.017	0.145	0.089
C.D. at 5%	NS	NS	NS	NS	NS	NS	NS	NS	NS	0.051	NS	NS
CV %	11.30	6.21	15.22	10.77	7.88	12.92	23.45	14.45	6.27	2.09	16.46	10.50

Table O Effect of	different plane new meet		Donal I/	he weete and allet	
Lable 9. Effect of	, different nitroden mai	nadement treatments on N	. P and K up	otake ov straw o	r <i>knarit</i> beari millet
			,	rand by other of	nina n pean mine

Treatments	N upta	ke by s	traw (kg	ı/ha)	P upta	ke by s	traw (kg	/ha)	K uptake by straw (kg/ha)			
	2021	2022	2023	Pooled	2021	2022	2023	Pooled	2021	2022	2023	Pooled
T ₁ : RDN @ 80 kg/ha as chemical fertilizer	37.60	31.22	24.79	31.20	8.17	6.21	3.99	6.12	83.5	50.70	58.12	64.12
T ₂ : 75% RDN as chemical fertilizer + 25% RDN through FYM	34.56	25.36	22.68	27.53	6.99	6.13	4.01	5.71	73.503	40.91	45.02	53.14
T ₃ : 75% RDN as chemical fertilizer + 25% RDN through vermicompost	38.00	25.22	20.67	27.96	7.92	6.20	3.38	5.83	83.33	41.78	46.46	57.19
T ₄ : 75% RDN as chemical fertilizer + 25% RDN through castor cake	34.48	28.06	24.13	28.89	7.49	6.84	3.32	5.88	79.57	45.18	57.98	60.91
T_5 : 50% RDN as chemical fertilizer + 25% RDN through FYM + Biofertilizer (<i>Azatobacter</i> + PSB)	30.26	22.01	18.76	23.67	6.23	5.84	3.20	5.09	70.19	31.63	45.94	49.23
T ₆ : 50% RDN as chemical fertilizer + 25% RDN through vermicompost + Biofertilizer (<i>Azatobacter</i> + PSB)	33.87	22.70	18.45	25.01	6.78	4.71	2.93	4.80	73.13	41.61	43.74	52.82
T ₇ : 50% RDN as chemical fertilizer + 25% RDN through castor cake + Biofertilizer (<i>Azatobacter</i> + PSB)	32.93	24.12	21.16	26.07	6.95	5.19	3.26	5.13	72.44	42.31	54.54	56.43
S.Em. ±	2.77	1.82	1.72	2.15	0.57	0.49	0.43	0.50	5.05	2.75	4.07	4.07
C.D. at 5%	NS	5.40	NS	6.03	NS	NS	NS	NS	NS	8.16	NS	11.39
CV %	16.04	14.23	15.94	15.84	15.77	16.74	25.20	18.18	13.20	13.07	16.21	14.46

Treatments	OC (%)			
	2021	2022	2023	Pooled
T ₁ : RDN @ 80 kg/ha as chemical fertilizer	0.205	0.126	0.241	0.190
T ₂ : 75% RDN as chemical fertilizer + 25% RDN through FYM	0.206	0.138	0.241	0.195
T ₃ : 75% RDN as chemical fertilizer + 25% RDN through vermicompost	0.203	0.138	0.224	0.188
T ₄ : 75% RDN as chemical fertilizer + 25% RDN through castor cake	0.214	0.158	0.234	0.202
T₅: 50% RDN as chemical fertilizer + 25% RDN through FYM + Biofertilizer (Azatobacter + PSB)	0.218	0.160	0.228	0.201
T ₆ : 50% RDN as chemical fertilizer + 25% RDN through vermicompost + Biofertilizer (<i>Azatobacter</i> + PSB)	0.209	0.153	0.221	0.194
T ₇ : 50% RDN as chemical fertilizer + 25% RDN through castor cake + Biofertilizer (Azatobacter + PSB)	0.201	0.143	0.221	0.188
S.Em. ±	0.005	0.010	0.010	0.008
C.D. at 5%	NS	NS	NS	NS
CV %	4.640	13.77	8.40	8.74
Initial	0.219	0.186	0.260	

Table 10. Effect of different nitrogen management treatments on OC of soil after harvest of crop

Treatments	Avail. N (kg/ha)			Avail. P₂O₅ (kg/ha)				Avail. K₂O (kg/ha)				
	2021	2022	2023	Pooled	2021	2022	2023	Pooled	2021	2022	2023	Pooled
T ₁ : RDN @ 80 kg/ha as chemical fertilizer	165.1	156.5	161.5	161.0	36.87	46.64	35.29	39.60	153.0	160.4	133.2	148.9
T ₂ : 75% RDN as chemical fertilizer + 25% RDN	176.9	169.7	159.5	168.7	39.91	35.49	36.93	37.44	154.6	159.8	134.8	149.7
through FYM												
T ₃ : 75% RDN as chemical fertilizer + 25% RDN	177.2	166.1	148.6	163.9	38.78	38.46	36.93	38.05	156.1	161.4	132.5	150.0
through vermicompost												
T ₄ : 75% RDN as chemical fertilizer + 25% RDN	174.6	166.1	173.6	171.5	41.33	42.21	38.58	40.70	158.7	155.1	135.0	149.5
through castor cake												
T ₅ : 50% RDN as chemical fertilizer + 25% RDN	180.8	174.4	156.4	170.5	42.28	43.75	38.16	41.39	165.8	158.0	137.5	153.7
through FYM + Biofertilizer (<i>Azatobacter</i> + <i>PSB</i>)												
T ₆ : 50% RDN as chemical fertilizer + 25% RDN	179.5	176.7	158.8	171.6	40.62	33.09	31.60	35.10	162.8	161.7	129.9	151.5
through vermicompost + Biofertilizer (Azatobacter												
+ <i>PSB</i>)												
T ₇ : 50% RDN as chemical fertilizer + 25% RDN	173.7	162.8	157.2	164.6	38.99	32.56	39.40	36.98	161.5	158.1	133.7	151.1
through castor cake + Biofertilizer (Azatobacter +												
PSB)												
S.Em. ±	3.54	2.85	5.46	4.10	1.944	2.05	3.592	2.64	4.29	1.41	3.4	3.26
C.D. at 5%	NS	8.48	NS	NS	NS	6.09	NS	NS	NS	4.18	NS	NS
CV %	4.04	3.41	6.85	4.90	9.763	10.55	19.578	13.72	5.40	1.77	5.08	4.32
Initial	165.4	169.3	162.9		35.46	30.68	34.74		160.3	141.0	162.9	

Table 11. Effect of different nitrogen management treatments on available N, P₂O₅ and K₂O in soil after harvest of crop

This could be due to higher grain and stover yield received under treatments. Results corroborated with the results of Tomar [7], Singh and Chauhan [8] Chaudhary et al. [9], Alsamowal et al. [10], Krishnaprabu [11] and Bhutadiya et al. [12].

3.3 Chemical Studies

3.3.1 Plant analysis

N, **P** and **K** content in grain and straw: The perusal of data presented in Tables 6 and 8 revealed that there are no significant variation was observed with respect to N, P and K content in grain and strover of pearlmillet in pooled results.

N, P and K uptake by grain and straw: The data presented in Tables 7 and 9 indicated that N uptake by grain and straw recorded significantly higher in treatment T₁ (RDN @ 80 kg/ha as chemical fertilizer) which was remained at par with treatment T_4 (75% RDN as chemical fertilizer + 25% RDN through castor cake), treatment T₃ (75% RDN as chemical fertilizer + 25% RDN through vermicompost) and treatment T₂ (75% RDN as chemical fertilizer + 25% RDN through FYM). The data presented in Tables 6 indicated that P and K uptake by grain recorded significantly higher in treatment T1 (RDN @ 80 kg/ha as chemical fertilizer) which was remained at par with treatment T₄ (75% RDN as chemical fertilizer + 25% RDN through castor cake) and treatment T₃ (75% RDN as chemical fertilizer + 25% RDN through vermicompost). In case of K uptake by straw recorded significantly higher in treatment T₁ (RDN @ 80 kg/ha as chemical fertilizer) which was remained at par with treatment T₄ (75% RDN as chemical fertilizer + 25% RDN through castor cake), treatment T_3 (75% RDN as chemical fertilizer + 25% RDN through vermicompost), treatment T₂ (75% RDN as chemical fertilizer + 25% RDN through FYM), 50% RDN as chemical fertilizer + 25% RDN through castor cake + Biofertilizer (Azatobacter + PSB) and 50% RDN as chemical fertilizer + 25% RDN through vermicompost + Biofertilizer (Azatobacter + PSB). P uptake by straw was found non significan. It might be due to the increase in grain and straw yield of pearlmillet due to the application of castor cake. This results corroborated with the results of Jakhar, R.R. [14]. Krishnaprabu, S. [11]. Lasya Mohana Rekha et al. [15].

3.3.2 Soil analysis

Effect of Nitrogen management treatments on soil properties: It is explicit from the data

presented in Table 10 that O.C of soil were not affected significantly by different nitrogen management treatments in *kharif* pearlmillet.

Available N, P_2O_5 and K_2O in soil after harvest of pearlmillet: The data presented in Table 11 indicated that no significant variation was observed with respect to available N, P_2O_5 and K_2O in the soil after harvest of pearlmillet during in pooled results.

From three years experimentation it can be concluded that higher yield and net realization can be secured with the application of either 100% RDN (Recommended Dose of Nitrogen) *i.e.* 80 kg/ha through chemical fertilizer or 75% RDN (Recommended Dose of Nitrogen) + 25% RDN through castor cake or vermicompost (20 kg N/ha) in addtion to recommend dose of phosphourus 40 kg/ha as basal under North Gujarat Agro climatic conditions.

4. CONCLUSION

Various growth and yield attributing characters of the crop were measured and studied during the course of investigations. Other management practices were followed as recommended. In addition recommended dose of phosphorus (P_2O_5) was applied commonly 40 kg/ha in all the treatments as basal dose while application of *Azatobacter*.

DISCLAIMER (ARTIFICIAL INTELLIGENCE)

Author(s) hereby declare that NO generative AI technologies such as Large Language Models (ChatGPT, COPILOT, etc) and text-to-image generators have been used during writing or editing of manuscripts.

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

 Parameshnaik C, Kalyana Murthy KN, Hanumanthappa DC, Seenappa C, Nanja Reddy YA, Prakasha HC. Effect of Nitrogen Management through Nano Fertilizers on Growth, Yield Attributes and Yield of Maize (*Zea mays* L.). Asian Journal of Soil Science and Plant Nutrition. 2024;10(1):250–257. Available:https://doi.org/10.9734/ajsspn/20 24/v10i1231

- Akter N, Sobahan MA, Badshah MA, Islam SA, Akter R, Islam MS. Effect of Nitrogen Management at the Reproductive Phase in Transplanted Rice. Journal of Experimental Agriculture International. 2022;44(12):111–120. Available:https://doi.org/10.9734/jeai/2022/ v44i122085
- Colaço AF, Bramley RG. Do crop sensors promote improved nitrogen management in grain crops? Field Crops Research. 2018 Apr 1;218:126-40.
- 4. Malik S. Pearl millet nutritional value and medicinal uses. International Journal of Advance Research and Innovative Ideas in Education. 2015;2395-4396.
- 5. Anonymous. Agricultural statistics at a glance. Government of India, Ministry of Agriculture and Farmer Welfare, Department of Agriculture, Cooperation and Farmers Welfare, Directorate of Economics and Statistics; 2020.
- Lima RSL, Severino Liv, Sampaio LR, Sofiatti V. Blends of castor meal and castor husks for optimized use as organic fertilizer. Industrial Crops and Products. 2011;33(2):364-368.
- 7. Tomar AS. Effect of integrated nutrient management yield on attributing characters and yield of bajra - wheat cropping system. А Journal of Multidisciplinary Advance Research. 2012;1(2):15-19.
- Singh BS, Chauhan SK. Productivity and economics of pearlmillet as influenced by integrated nutrient management. Annals of Plant and Soil Research. 2014;16(4):356-358.
- 9. Chaudhary VJ, Patel BJ, Patel KM. Response of summer groundnut (*Arachis hypogaea* L.) to irrigation scheduling and

sources of nitrogen under North Gujarat conditions. Trends in Biosciences. 2015; 8(5):1310-1313.

- 10. Asamowal MM, Hadad MA, Elhassan GA. The effect of local mycorrhiza isolated, Rhizobium and fertilization on Zea mays and groundnut plant productivity under field condition in Sudan. International Journal of Agricultural Research and Development Organisation. 2016;2(3):26-42.
- Krishnaprabu S. Influence of integrated nutrient management in pearl millet. Int. Journal of Pure App. Biosci. 2018;6(6):508-510.
- 12. Bhutadiya JP, Chaudhary MG,Damor RP, Patel AJ. Effect of different organic sources on growth, yield, yield attributes and economics of summer groundnut (*Arachis hypogaea* L.) under organic farming. Journal of Pharmacognosy and Phytochemistry. 2019;8(2):846-849.
- 13. Jani MD, Patel JC, Patel JR, Patel HS, Shah HM. Effect of organics on economics growth, vield and on groundnut. The summer Pharma Journal. 2021; SP-10(12): Innovation 1361-1367
- 14. Jakhar RR. Integrated nutrient management in pearlmillet (Pennisetum glaucum L.) and its residual effect on succeeding mustard (*Brassica juncea* L.) in North Western Rajasthan. Ph. D Thesis, SKRAU, Bikaner; 2017.
- 15. Lasya Mohana Rekha D, Lakshmipathy R, Vijaya Gopal A. Effect of microbial consortium and organic manure on growth and nutrient uptake in pearlmillet (*Pennisetum glaucum* L.). International Journal of Current Microbiology and Applied Science. 2018;7(6):2256-2261.

© Copyright (2024): Author(s). The licensee is the journal publisher. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history: The peer review history for this paper can be accessed here: https://www.sdiarticle5.com/review-history/117917