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ABSTRACT 
 

Rice (Oryza sativa L.) is a staple food for over half the world's population, particularly in Asia. This 
study explores the potential of Zn-solubilizing microbes to enhance micronutrient content in rice, 
aiming to address these deficiencies sustainably. Beneficial free-living soil bacteria, specifically 
plant growth-promoting rhizobacteria (PGPR), were investigated for their role in improving plant 
health and yield. Twenty-two bacterial isolates were screened for Zn solubilization, with 
Enterobacter hormaechei identified as the most promising. Field experiments with rice varieties PD 
26 and NDR 359 involved treatmentssuch asT1 (Control), T2 (ZnSB1: Enterobacter hormaechei 
MT507226.1), T3 (Consortium1: Pantoearodasii MZ397586 + Seratiamarcesecens MW843567), 
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and T4 (Consortium2: Enterobacter hormaechei MT507226.1 + Pantoearodasii MZ397586 + 
Seratiamarcesecens MW843567).  with individual and consortia of Zn-solubilizing bacteria. 
Significant improvements were shown in plant height, leaf area index (LAI), total chlorophyll, total 
dry matter (TDM), and grain yield. Results showed that Consortium1 (T3) significantly increased 
plant height by 7.94% for PD26 and 10.16% for NDR 359. Leaf Area Index (LAI) also improved 
notably under Consortium1, with increases of 15.56% for PD26 and 24.39% for NDR 359. Total 
chlorophyll content was highest under Consortium1 for PD26 (36.63% increase) and under 
Consortium2 for NDR 359 (31.41% increase). Total dry matter (TDM) showed substantial gains, 
especially in NDR 359 with Consortium2 treatment, achieving a 36.51% increase. Grain yield 
increased significantly across all treatments, with Consortium1 showing the highest yields: 12.26% 
for PD26 and 23.01% for NDR 359.Correlation analysis indicated strong positive relationships 
between plant height, TDM, and grain yield, underscoring the importance of these parameters in 
determining crop productivity. The findings suggest that microbial consortia, particularly 
Consortium1, can effectively replace traditional zinc fertilizers, enhancing sustainable agriculture by 
promoting plant growth and yield. These results are consistent with recent studies on the role of 
plant growth-promoting rhizobacteria (PGPR) in improving nutrient uptake and crop performance. 
 

 
Keywords: Zinc solubilizing bacteria; Rice; yield; PGPR. 

 

1. INTRODUCTION 
 

Rice (Oryza sativa L.) is a staple food for over 
half of the world's population, particularly in Asia 
[1]. Despite its significance in global food 
security, rice is inherently low in essential 
micronutrients such as zinc (Zn) and iron (Fe), 
leading to widespread deficiencies among             
rice-dependent populations. Micronutrient 
malnutrition, often referred to as "hidden hunger," 
affects billions of people worldwide, resulting in 
severe health issues such as impaired cognitive 
development, weakened immune systems, and 
increased susceptibility to infections [2]. In 
context to the human andhealth of other 
organisms, Zn is required in trace amounts to 
support proper physiological functions such as 
cell division, cell growth, wound healing, and the 
breakdown of carbohydrates; recognized as a 
vital mineral for overall well-being [3]. However, 
the availability of Zn in soils is diminishing due to 
factors like low organic matter, excessive 
fertilization, inadequate recycling of crop 
residues, cultivation of high-yielding crop 
varieties, and intensive cropping patterns [4]. 
Addressing the issue of Zn deficiency, there is a 
rising focus on micronutrient biofortification of 
staple grain crops in developing nations, aiming 
to enhance nutritional quality and combat 
widespread deficiencies [5]. Beneficial free-living 
soil bacteria, specifically plant growth-promoting 
rhizobacteria (PGPR), have shown promise in 
improving plant health and bolstering yield [6]. 
PGPR fulfill multifaceted roles in sustainable 
agriculture as they reside within the rhizosphere, 
encompassing root surfaces and establishing 
symbiotic relationships with plant roots to 

enhance overall plant growth and health [7]. The 
solubilization of metal salts constitutes a 
significant trait of PGPR, facilitating the 
mobilization of compounds accessible to plants. 
Various PGPR, including strains from genera 
such as Serratia, Bacillus, Pseudomonas, have 
been identified as effective Zn solubilizers, 
augmenting plant growth by colonizing the 
rhizosphere and converting complex Zn 
compounds into simpler forms accessible to 
plants [8,9]. Study by Ali et al., [10] in field 
experiments was conducted to evaluate the 
impact of treatment combinations (control 
(without Zn and bacterial inoculation), 4, 8, 12, 
16 and 20 kg Zn ha−1 were applied to soil without 
and with inoculation of zinc-solubilizing bacteria 
to the seed of wheat cultivar, i.e., Wadaan-17 
and Zincol-16). Results showed that zinc-
solubilizing bacteria in conjunction with zinc 
sulfate significantly (P ≤ 0.05) increased the yield 
by 61%. Among the treatment combinations, 
inoculation of Zn-solubilizing bacteria in 
conjunction with 8 kg Zn ha−1 substantially 
boosted the yield and yield attributes of wheat 
crop under field conditions. Also, Unnikrishnan 
and Karayi, [11]  found that there was an 
increase in plant height, leaf area, number of 
grains per panicle and grain yield per plant on 
inoculation with Phanerochaeteconcrescens    
KS7 in two selected varieties of rice grown in 
zinc deficient soil.The utilization of PGPR 
presents a promising and environmentally    
friendly approach, serving as a viable substitute 
for chemical fertilizers, pesticides, and 
supplements, contributing to sustainable 
agricultural practices and promoting soil           
health. 
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The present study aims to evaluate the effects of 
Zinc Solubilizing Bacteria and microbial consortia 
on rice plant growth parameters, including plant 
height, Leaf Area Index (LAI), total chlorophyll, 
total dry matter (TDM), and grain yield. By 
assessing these parameters, the study seeks to 
provide insights into the potential of ZSB and 
microbial consortia as sustainable alternatives to 
improve Zn content in rice cultivation. 
 

2. MATERIALS AND METHODS  
 
The bacterial culture employed in this 
investigation was obtained from rhizospheric soil 
samples of field-grown rice at the vegetative 
stage collected from Pantnagar (29.0369° N, 
79.4472° E), Udham Singh Nagar District, 
Uttarakhand, India. Soil samples were collected 
in triplicate by uprooting the plant and carefully 
collecting the soil adhered to roots, followed by 
mixing the soil to make a composite 
sample. Twenty-two isolates were initially 
screened for their Zn solubilization capabilities, 
leading to the identification of the most promising 
isolate, TRR2, was chosen for subsequent 
experiments. Utilizing 16S rRNA sequencing, the 
selected isolate was identified as Enterobacter 
hormaechei. Reference strains (Pantoearodasii 
MZ397586 and Seratiamarcesecens MW843567) 
were collected from the Department of 
Microbiology, College of Basic Sciences and 
Humanities, G.B. Pant University of Agriculture 
and Technology Pantnagar. Further 
characterization of this strain included a study of 
its PGPR attributes, followed by a field 
experiment conducted on the staple crop rice 
(Oryza sativa L.) at the Dr. Norman E. Borlaug 
Crop Research Centre, G.B. Pant University of 
Agriculture and Technology, Pantnagar, 
Uttarakhand, India. 

 

2.1 Seed and Seedling Bacterization and 
Field Experiment  

 
Seeds of cultivable rice varieties (PD 26 and 
NDR 359) underwent surface sterilization using 
0.1% mercuric chloride solution for 3 min 

followed by 70% ethanol for 3 min and were then 
rinsed eight times with sterile distilled water as 
described by Prathap et al. [12]. Subsequently, 
the seeds were treated with an overnight grown 
bacterial inoculum having an optical density (105 
to 106 Colony Forming Unit) along with 0.5% 
carboxymethylcellulose (CMC) to provide 
adhesiveness. Seeds were sown, and after 21 
days, the seedlings were treated with bacterial 
inoculation in the same manner as the seed 
bacterization. 
 

2.2 Measurement of Plant Height, LAI, 
Total Dry Matter, Total Chlorophyll 
and Grain Yield 

 
At the time of flowering, plant height was 
measured using a measuring tape from the base 
at soil level to the highest point of the plant on a 
representative sample. Leaf Area Index (LAI) 
was determined by collecting all leaves from the 
sampled plants, measuring their area with a leaf 
area meter, and calculating LAI as the total leaf 
area per unit ground area. For Total dry matter 
(TDM), the entire above-ground portion of the 
plants was harvested, dried in an oven at 65°C 
until a constant weight, and weighed. At the time 
of flowering, total chlorophyll content was 
determined using the DMSO (dimethyl sulfoxide) 
method. Fresh leaf samples were collected and 
cut into small pieces, with 0.1 g of the leaf tissue 
placed in a test tube containing 10 ml of DMSO. 
The test tubes were incubated in a water bath at 
65°C for 30 minutes to extract the chlorophyll. 
After incubation, the solution was cooled to room 
temperature, and the absorbance was measured 
at 663 nm and 645 nm using a 
spectrophotometer. Total chlorophyll content was 
calculated using the Arnon’s [13] formula:  
 

Total chlorophyll (mg/g) =
(20.2X A665 + 8.02 XA649)X V

Weight (g)X 1000
 

 
At the time of harvest, grain yield was 
determined by harvesting grain from a 
representative sample area of 1 m² within each 
plot. The harvested grain was dried to a constant 

 
Table 1. Treatment Details 

 

T1 Control 

T2 ZnSB1 (Enterobacter hormaecheiMT507226.1) 
T3 Consortium1 (Pantoearodasii MZ397586 + Seratiamarcesecens MW843567) 

T4 
Consortium2 (Enterobacter hormaecheiMT507226.1+Pantoearodasii MZ397586 + 
Seratiamarcesecens MW843567) 
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moisture content, then weighed to determine the 
yield in grams per square meter (g/m²). To 
calculate the grain yield per hectare (t/ha), the 
yield in g/m² was converted using the formula: 
 

Yield (t/ha) = Yield (g/m²) × 0.01 
 
This conversion factor accounts for the scaling 
from square meters to hectares and grams to 
metric tons. 
 

2.3 Statistical Analysis  
 
Based on the experimental design, the data from 
the plant study were meticulously analysed in 
triplicate and subjected to Analysis of Variance 
(ANOVA). Statistical analysis was executed 
utilizing the Microsoft Excel to accurately quantify 
and evaluate the sources of variation.                      
While graphs were plotted by the help of Origine 
Pro. Subsequently, treatment means were 
compared at a significance level of 5% to 
ascertain the presence of any significant 
differences. 
 

3. RESULTS  
 
3.1 Effect of Bacterial Strains on Rice 

Plant Height and Leaf Area Index 
 
3.1.1 Plant height (cm) 
 
The effect of different treatments on plant height 
is presented in Table 2. The plant height for the 
PD26 variety under the control treatment (T1) 
was 118.32±1.77 cm, whereas the NDR 359 
variety measured 85.12±0.74 cm. Treatment with 
ZnSB1 (T2) resulted in an increase in plant 
height to 120.36±1.80 cm for PD26, which is a 
1.69% increase compared to the control, and to 
88.66±0.77 cm for NDR 359, a 4.00% increase. 
Consortium1 treatment (T3) showed the highest 
increase, with plant heights of 128.52±1.92 cm 
for PD26 (7.94% increase) and 94.74±0.82 cm 
for NDR 359 (10.16% increase). Consortium2 
treatment (T4) resulted in plant heights of 
120.36±1.80 cm for PD26 (1.70% increase)              
and 90.19±0.78 cm for NDR 359 (5.62% 
increase). 
 
3.1.2 Leaf Area Index (LAI) 
 
The Leaf Area Index (LAI) results also shown in 
Table 2. Under control conditions (T1), the LAI 
was 3.75±0.15 for PD26 and 3.10±0.18 for NDR 
359. Treatment with ZnSB1 (T2) resulted in LAI 

values of 3.80±0.16 for PD26 (1.30% increase) 
and 3.50±0.20 for NDR 359 (11.43% increase). 
Consortium1 treatment (T3) significantly 
increased the LAI to 4.44±0.18 for PD26 (15.56% 
increase) and 4.10±0.24 for NDR 359 (24.39% 
increase). Consortium2 treatment (T4) produced 
LAI values of 4.04±0.17 for PD26 (7.32% 
increase) and 3.90±0.22 for NDR 359 (20.51% 
increase). 
 

3.2 Effect of Bacterial Strain on Total 
Chlorophyll, Total Dry Matter and 
Grain Yield 

 
3.2.1 Total chlorophyll content (mg/g FW) 
 
The total chlorophyll content showed significant 
increases across the different treatments for both 
PD26 and NDR 359 varieties. For PD26, the 
control group (T1) recorded a total chlorophyll 
content of 2.76±0.08 mg/g FW, with percentage 
increases in treatments T2 (ZnSB1), T3 
(Consortium1), and T4 (Consortium2) of 10.99%, 
36.63%, and 33.87%, resulting in chlorophyll 
contents of 3.10±0.10, 4.36±0.14, and 4.17±0.12 
respectively. For NDR 359, the control group's 
chlorophyll content was 2.59±0.06 mg/g FW, with 
percentage increases in T2, T3, and T4 of 
11.70%, 29.57%, and 31.41%, resulting in 
chlorophyll contents of 2.94±0.06, 3.68±0.08, 
and 3.78±0.08 respectively. These results 
indicated that the T3 (Consortium1) treatment led 
to the highest increase in chlorophyll content for 
PD26, while T4 (Consortium2) showed the 
highest increase for NDR 359. 
 
3.2.2 Total dry matter (g/m2) 
 
The total dry matter showed notable increases 
across the different treatments. For the PD26 
variety, the control group (T1) had a TDM of 
825.44±15.19, while the T2, T3, and T4 
treatments saw percentage increases of 4.71%, 
9.17%, and 8.78%, resulting in TDM values of 
866.22±24.11, 908.78±47.11, and 904.89±20.78 
respectively. In the NDR 359 variety, the control 
group recorded a TDM of 395.89±29.41, with T2, 
T3, and T4 treatments showing percentage 
increases of 15.50%, 20.40%, and 36.51%, 
leading to TDM values of 468.44±50.34, 
497.33±21.94, and 623.56±55.05 respectively. 
These results indicate that the T4 (Consortium2) 
treatment significantly boosted TDM in the NDR 
359 variety, demonstrating its potential 
effectiveness in enhancing dry matter 
accumulation. 
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Table 2. Effect of bacterial strains on rice plant height and leaf area index 
 

Treatment Plant Height(cm) LAI 

PD26 NDR 359 PD26 NDR 359 

T1 Control 118.32±1.77b (0.00) 85.12±0.74e (0.00) 3.75±0.15bc (0.00) 3.10±0.18d (0.00) 
T2 ZnSB1 120.36±1.80b (1.69) 88.66±0.77de (4.00) 3.80±0.16bc (1.30) 3.50±0.20cd (11.43) 
T3 Consortium1 128.52±1.92a (7.94) 94.74±0.82c (10.16) 4.44±0.18a (15.56) 4.10±0.24ab(24.39) 
T4 Consortium2 120.36±1.80b (1.70) 90.19±0.78d (5.62) 4.04±0.17abc (7.32) 3.90±0.22abc (20.51) 
*Each value is the mean of three replicates. Different letter(s) within the column indicate significant differences in the mean for interaction, Variety x treatments (Fisher LSD 

test, p < 0.05). ± indicates the standard error of the mean. Values in the brackets indicate a percent increase over the control 
 
 

 
 

Fig. 1. Effect of bacterial strains on, total chlorophyll, total dry matter and grain yield 
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3.2.3 Grain yield (t/ha) 
 
The grain yield significantly increased across 
various treatments for both PD26 and NDR 359 
varieties. For the PD26 variety, the control group 
(T1) had a grain yield of 6.48±0.07 t/ha, with 
treatments T2 (ZnSB1), T3 (Consortium1), and 
T4 (Consortium2) resulting in yields of 7.16±0.34, 
7.39±0.19, and 7.09±0.06 t/ha, showing 
percentage increases of 9.39%, 12.26%, and 
8.61% respectively. For the NDR 359 variety, the 
control group recorded a grain yield of 5.28±0.07 
t/ha, while treatments T2, T3, and T4                    
increased yields to 6.21±0.10, 6.86±0.12, and 
6.83±0.12 t/ha, representing percentage 
increases of 15.03%, 23.01%, and 22.76% 
respectively. These results indicate significant 
enhancements in grain yield for both varieties 
with the various treatments, particularly with the 
T3 (Consortium1) treatment demonstrating the 
highest increase in both cases. 
 

3.3 Correlation Analysis among 
Parameters Affected by Bacterial 
Treatment 

 
The correlation matrix in the provided Fig. 2. 
illustrates the relationships between                     
several agronomic traits: plant height, leaf area 

index (LAI), total chlorophyll (Total chl), total dry 
matter (TDM), and grain yield. The analysis 
reveals that plant height has a strong positive 
correlation with TDM (0.93) and a moderate 
positive correlation with grain yield (0.65). LAI 
shows a moderate positive correlation with total 
chlorophyll (0.72) and grain yield (0.68), while 
also maintaining a weaker positive correlation 
with plant height (0.53) and TDM (0.49). Total 
chlorophyll is moderately positively correlated 
with LAI (0.72) and grain yield (0.72), with 
weaker positive correlations observed with TDM 
(0.47) and plant height (0.45). TDM displays a 
very strong positive correlation with plant height 
(0.93) and a moderate positive correlation with 
grain yield (0.68). Grain yield itself is moderately 
positively correlated with total chlorophyll (0.72), 
LAI (0.68), plant height (0.65), and TDM (0.68). 
The colour gradient and ellipses in the                      
matrix provide a visual representation of                     
these correlations, with red indicating positive 
correlations and the intensity of the                         
colour reflecting the strength of these 
relationships. 
 

4. DISCUSSION 
 
The results of this study clearly demonstrate the 
positive impact of Zinc Solubilizing Bacteria 

 

 
 
Fig. 2.  The correlation analysis between plant height, Leaf Area Index (LAI), total chlorophyll, 

total dry matter (TDM), and grain yield 
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(ZnSB) and microbial consortia on various 
growth parameters and the yield of rice. The 
application of ZnSB1 (T2) and microbial 
consortia (T3 and T4) (Pantoearodasii + 
Seratiamarcesecens, Enterobacter hormaechei + 
Pantoearodasii + Seratiamarcesecens) resulted 
in significant increases in plant height, Leaf Area 
Index (LAI), total chlorophyll, total dry matter 
(TDM), and grain yield for both PD26 and NDR 
359 rice varieties. Notably, the Consortium1 (T3) 
treatment showed the highest improvements 
across all parameters, indicating a synergistic 
effect among the microbes.These treatments are 
thought to stimulate the plant's root system, 
improving the absorption of essential nutrients 
from the soil. This can lead to better growth and 
higher yields. This enhancement can be 
attributed to the improved solubilization and 
availability of zinc and other nutrients,                          
which are crucial for various physiological 
processes such as photosynthesis, protein 
synthesis, and overall plant growth [14,15]. 
These findings align with recent                            
studies highlighting the role of beneficial 
microbes in promoting plant growth through 
enhanced nutrient uptake and hormonal 
regulation [16].  
 

The observed improvements in plant height and 
TDM were strongly correlated with higher grain 
yields, underscoring the importance of these 
growth parameters in determining overall 
productivity. The increase in LAI and total 
chlorophyll further suggests enhanced 
photosynthetic capacity, contributing to better 
biomass accumulation and yield [17]. These 
results support the potential of using ZnSB and 
microbial consortia as sustainable alternatives to 
traditional zinc fertilizers, providing a holistic 
approach to improving rice cultivation [18]. The 
significant yield gains achieved with these 
treatments indicate their practical applicability in 
enhancing food security and agricultural 
sustainability.The treatments might promote the 
development of stronger and more resilient plant 
structures, including roots, stems, and leaves, 
contributing to overall plant vigor and the ability 
to support higher yields. Future research should 
focus on understanding the long-term effects of 
these microbial treatments on soil health and 
exploring their potential in other crop systems 
(Nabi, 2023; Ali et al., 2024). 
 

5. CONCLUSION 
 

In conclusion, the study reveals that the 
Consortium1 (T3) and Consortium2 (T4) 
treatments substantially improve various growth 

parameters and overall productivity of PD26 and 
NDR 359 plant varieties. These treatments 
significantly increased plant height, Leaf Area 
Index (LAI), total chlorophyll content, total dry 
matter (TDM), and grain yield. The strong 
positive correlations among these parameters 
indicated that improvements in plant height and 
TDM are particularly influential in boosting grain 
yield. The findings are consistent with recent 
research demonstrating the efficacy of microbial 
consortium and bio-fertilizer treatments in 
enhancing plant growth and yield. Therefore, 
Consortium1 and Consortium2 treatments 
present a promising strategy for improving crop 
performance and agricultural productivity. 
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