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ABSTRACT 
 
Aims: To identify the most appropriate drought indices for the identification and monitoring of 
historical meteorological and agricultural drought incidences and to explore the spatial 
characteristics of these droughts. 
Study design: GIS-based empirical research design. 
Place and Duration of Study: Upper Tana River Watershed, Kenya drought analysis covering a 
period of 1981 to 2013. 
Methodology: National Oceanic and Atmospheric Administration-Advanced Very High Resolution 
Radiometer (NOAA-AVHRR) provided raster maps for Normalized Difference Vegetation Index 
(NDVI) agricultural drought index, while GeoClim databased through Climate Hazards Group 
InfraRed Precipitation with Station data (CHIRPS) was used for retrieval of raster maps for 
Standardized Precipitation Index (SPI) meteorological drought index. ArcGIS version 10.3.1 
facilitated image enhancement and correction for better visualization and interpretation. 
Results: Agricultural drought years were in 1983, 1987, 1993, 1996, 2000, 2004, 2005, 2008, and 
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2009 while meteorological drought years were in 1983, 1984, 1992, 1996, 1999, 2002, 2003, and 
2011. 
Conclusion: Meteorological drought triggered events of agricultural drought. Both droughts 
showed a widespread pattern and were found to manifest at relatively same intervals during the 
study period. 
 

 
Keywords: Drought; spatial; GIS; remote sensing; SPI, NDVI. 
 

1. INTRODUCTION 
 

Human beings are often encountered with the 
challenge of having either too much water 
(flooding) or too little water (drought) due to the 
extreme hydrological and climatic phenomena [1, 
2]. All types of climate experience drought and 
this phenomenon not only occurs in arid regions 
but also the humid regions [3,4]. Mahmoudi et al. 
[5], defined drought as a period of prolonged 
water shortages that disrupts growth, 
development and the environmental-human 
relationship. Due to its adverse impacts on food 
security, ecosystem functions and services, and 
the economy at large, much greater attention has 
been given to drought all around the world 
[6,7,5,8]. 
 

Drought continues to modify the agricultural 
sector and land-use-land-cover [9]. Moreover, 
the inconsistency between water supply and 
water demand is projected to be harsher in 
regions with warm climates [10]. Many countries 
in Africa have continuously faced drought [2]. 
The 2011 East-African drought caused dire 
situations across several countries and led to 
widespread and costly famine in the region [11]. 
It is expected that, as a result of drought, there 
will be a relative decline in water availability in 
the future in this region [12]. There has been 
evidence of increased drought frequencies in 
Kenya over the last three decades affecting the 
aquatic ecosystems and human resources [13, 
14]. For instance, the 1999-2000 drought led to 
massive water level fluctuations in several rivers, 
dams, reservoirs and aquifers in the Tana River 
Basin [15]. The water imbalance in precipitation, 
evapotranspiration, runoff and water storage in 
the basin calls for heightened monitoring of 
droughts with regards to water resources [16]. 
 

There are three main types of drought that have 
been widely featured in the scientific literature 
[17]. First is the meteorological drought that is 
primarily as a result of prolonged periods of 
abnormally dry weather patterns dominating an 
area leading to prolonged below-normal 
precipitation and a rise in the air temperatures 
[18,19]. Not only can this deficit in precipitation 

quickly develop, but also abruptly halt [20,8]. The 
primary indicators of this category of drought are 
rainfall and temperature fluxes [21]. This drought 
type triggers the other two types of drought [22]. 
The second type is the hydrological drought that 
can be defined as a reduction in the actual 
streamflow levels, lakes levels, water levels in 
reservoirs and groundwater levels, below a 
threshold level [23]. Hydrological droughts persist 
for a longer time as compared to meteorological 
droughts since shortages in precipitation often 
translate to deficits in other hydrologic variables 
with significant time-lapses [24]. The last type is 
agricultural drought that is characterised by 
reduced precipitation and extreme 
evapotranspiration leading to a decline in the soil 
moisture content in the root zone. A deficit in the 
soil moisture is critical because crop yields can 
be heavily affected due to water deficiencies 
during the growing seasons [25,8]. The main 
indicator of this drought is crop water stress that 
aids the characterisation of vegetation responses 
during drought and non-drought periods [26]. 
 
Monitoring of drought can be achieved through 
the application of drought indices from either 
remote sensing or classical climatic indices of 
drought [27]. Drought indices based on Remote 
Sensing (RS) and Geographical Information 
System (GIS) tools produce near-real-time 
estimations of climatic parameters and have 
facilitated the monitoring and evaluation of 
spatial patterns of drought incidences [28]. On 
the other hand, classical climatic drought indices 
such as the Palmer Drought Severity Index 
(PDSI) and the Palmer Moisture Anomaly Index 
(the z-index) use data records from in-situ 
climatic and weather stations together with 
ground measurements, and they depend on 
these records to monitor and evaluate drought 
occurrences [29,30]. An advantage of these 
classical climatic drought indices over the RS 
based indices is that they give long-term records 
of data that facilitates long-term drought 
assessment and evaluation [31,32]. However, 
since drought monitoring and evaluation requires 
high temporal and spatial resolution of data, the 
new generation RS indices such as the 
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Normalized Difference Vegetation Index (NDVI), 
Vegetation Condition Index (VCI), Temperature 
Condition Index (TCI) and Crop Water Severity 
Index (CWSI) have been used in many scientific 
studies to study drought incidences over large 
areas and different landscape levels since the 
climatic stations are sparse in many areas [33, 
34,35,30]. 

 
Evaluation of spatial characteristics of drought is 
an exceptionally convoluted task [22]. Moreover, 
the complexity of drought spatial patterns and the 
vast climatic transitions resulting from the 
intricacy of atmospheric influences makes this 
task even more complicated [36]. A 
comprehensive evaluation of drought spatial 
characteristics is vital for drought assessment 
and early warning systems [37,38,39]. The 
spatial analysis takes into account aspects like 
drought severity, intensity, drought centroid and 
affected areas [40]. This facilitates the 
identification and monitoring of the onset, 
extension and end of a drought episode. The 
coverage area of a drought event is useful in 
determining its spatial characteristics [41]. 

 
The Upper Tana Watershed provides a wide 
range of ecosystem services but the extreme 
weather events, drought, in particular, has 
continuously become a threat to the watershed 
functions. The catchment is one of the most 
agriculturally productive regions in the country 
and additionally, due to the increased 
competition for water in terms of hydro-power, 
horticulture, irrigation, rice schemes and 
domestic uses, it is thus imperative to study the 
historical drought characteristics in the 
catchment. Although there have been studies of 
drought in the region, most of these studies 
applied the classical climatic drought indices 
such as PDSI and Soil Moisture Severity Index 
(SMSI). Therefore, this study used the modern 
and unique sensor-based data to give a 
comprehensive understanding of the spatial 
characteristics of drought that influences its 
severity, intensity and the affected area coverage 
is vital for modelling, prediction, mitigation and 
management of these droughts together with 
planning of activities such as water withdrawals 
in the watershed and for the sustainability of the 
watershed.  

 
Therefore, to identify the most appropriate 
drought indices for the identification and 
monitoring of historical (1981 to 2013) 
meteorological and agricultural drought 
incidences and to explore drought spatial 

characteristics were the key objectives of this 
study. 
 

2. MATERIALS AND METHODS 
 

2.1 Study Region 
 

The Upper Tana River Watershed covers six 
counties that are inclusive of Meru, Embu, 
Murang’a, Nyeri, Kirinyaga and Tharaka with 
Meru County having the highest population 
density of 1,356,301 while Tharaka having the 
lowest population density of 365,330 according 
to KNBS, 2010. Ecological factors, climatic 
conditions, food availability and type of farming 
influence the settling patterns in the watershed. 
The watershed has large protected areas such 
as national parks and forested areas. Moreover, 
large farm scales like Kakuzi, Delmonte, and 
Mwea rice fields and ranches such as Ngariama 
and Solio ranches have minimal settlements. The 
strong linkage to the environment is the main 
cause of poverty across the watershed in that 
changes in environmental condition has resulted 
to a decline in agricultural production which is the 
major source of livelihood to a majority of the 
people in the watershed. 
 

The climate in the region is largely influenced by 
the inter-tropical convergence and the Mt. Kenya 
and Aberdare Ranges reliefs. The precipitation 
experienced is bimodal with the short rains 
between October and December and the long 
ones between March and June. Precipitation 
increases with an increase in altitude, as areas 
around Mt. Kenya and Aberdare ranges have an 
average annual amount around 2,700 mm 
whereas areas with lower altitudes experience 
average annual precipitation of 410 mm. The 
lower regions have a mean annual temperature 
that ranges from 26° to 30ºC and average annual 
potential evaporation of 2,300 mm while in high 
altitude areas, the mean annual temperatures 
range between 14° to 18ºC. The average annual 
potential evaporation of the watershed is 1,200 
mm [42]. 
 

The soils in the region are grouped into four 
broad classes. In areas with altitudes above 
4,000m, the soils are characterised by shallow 
dark loams with low bulk densities and high 
organic matter content; these are the Leptosols, 
Greysols and Regosols. Areas with altitudes 
between 2,400 to 4,000 m have soils 
characterised by high organic matter content, low 
bulk density and are primarily formed from 
pyroclastic rocks; these are the Histosols, 
Regosols and Andosols. In the lower areas with 
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altitudes below 2,600 m have red soils with 
significant clay content and are mainly the 
Andosols, Nitisols and Cambisols. 
 
Vegetation cover in the study region is              
divided into seven categories dependent on the 
altitude, precipitation and temperature. The Mt. 

Kenya catchment has the forest zone, the                 
tea zone, the coffee zone and the Lower zone. 
The Aberdare Ranges catchment has the 
Aberdare conservation area inclusive of the 
national park, the middle zones inclusive of 
farming areas and the lower arid and semi-arid 
zones. 

 

 
 

Fig. 1. Map of the Upper Tana River Watershed 
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2.2 Data 
 
2.2.1 Drought indices 
 
2.2.1.1 Normalized Difference Vegetation Index 

(NDVI)  
 
The spatial characterisation of the agricultural 
drought were achieved using long-term NDVI. 
NDVI is a useful indicator for biomass estimation 
and production pattern and is calculated as in 
equation 1. Many researchers have successfully 
used this index to monitor vegetation phenology 
and mapping of vegetation cover [43,44,45].  
 
 

���� = (��� − ���) (��� + ���)⁄           (1) 
 
Where NIR is the near-infrared band and VIS is 
the visible red band of the electromagnetic 
spectrum. NDVI values for this study range from 
+1.00 to -1.00 but for this study, a range of 1 to 0 
was selected for reasonability (Table 1) with 
values closer to 1 depicting non-drought 
conditions and values closer to 0 representing 
drought conditions. 
 

NDVI images were retrieved from the Near-
Infrared and Visible bands, which are the widely 
used vegetation index. Raster images of NDVI 
for the Upper Tana River Watershed were 
downloaded as GeoTiff files from the National 
Oceanic and Atmospheric Administration-Very 
High Radiometric Resolution (NOAA AVHRR) 
satellite using the NOAA CDR NDVI dataset from 
USGS Earth Explorer from 1981 to 2013. April 
and November were the months of interest for 
this study since they correspond to the rainy 
seasons in the study region. The raster images 
were then enhanced and corrected using the 
ArcGIS 10.3.1 for enhanced visualisation and 
interpretation of the spatial extents of drought. 
Using the ArcToolBox, the raster maps Upper 
Tana River watershed were extracted from their 
corresponding  NDVI Africa raster maps using 
the extraction by polygon option in the extraction 
tool under the spatial analyst tool. The extracted 

raster map was then converted to point data to 
enable interpolation. Interpolation by kriging was 
selected. The output map was then classified into 
six classes that correspond to the NDVI spectral 
range in Table 1. 
 
2.2.1.2 Standardized precipitation index (SPI)  
 
The calculation of this index is based on long-
term precipitation data [46,47]. Precipitation 
amounts are summed over n months 
(accumulation period) and then normalised to the 
standard normal distribution (μ=0, σ=1). The 
non-exceedance probabilities are calculated by 
fitting a parametric statistical distribution to the 
time of the year using a reference period. It is 
therefore easy to make objective and relative 
comparisons across different locations by 
interpreting the number of standard deviations 
from the normal conditions for a given time of the 
year [48,46].  
 
For this study, 32 years, 1981 to 2013, was the 
reference period and SPI for 1, 2, 3, 6, 9, 12, 24 
months was the standard period. The SPI-12, 
which corresponds to a 12 month accumulation 
period, was selected. The index values range 
(Table 2) was used where positive values of SPI 
represent wetter-than-average conditions, while 
negative values indicate drier-than-average 
conditions [9,8]. 
 
The GeoClim geodatabase was used to calculate 
SPI-12 and the output raster data imported and 
corrected in the ArcGIS10.3.1 for spatial 
analysis. From yearly raster images of Kenya, 
the image was resampled from a 0.05 to 0.005 
cell size using the bilinear resampling technique 
in the resample option under the raster 
processing in the data management tools in the 
ArcToolBox. The Upper Tana River watershed 
was extracted from these resampled raster 
images. The raster maps were then converted to 
point data for ease of interpolation. The kriging 
interpolation method was used and the image 
was classified to seven classes as per the SPI 
scale range in Table 2. 

 
Table 1. NDVI spectral range and interpretation 

 
NDVI Interpretation Abbreviation 
≥1.00  Very wet VW 
0.80 to 0.99 Moderately wet MW 
0.60 to 0.79 Near normal NN 
0.40 to 0.59 Moderately dry (moderate drought) MD 
0.20 to 0.39 Severely dry (severe drought) SD 
0.00 to 0.19 Extremely dry (extreme drought) ED 
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Table 2. Interpretation of SPI values 
 

SPI value Interpretation Abbreviation 
≥ 2.00 Extremely wet EW 
1.50 to 1.99 Very wet VW 
1.00 to 1.49 Moderately wet MD 
0.99 to -0.99 Near normal NN 
-1.00 to -1.49 Moderately dry MD 
-1.50 to -1.99 Severely dry SD 
≤ -2.00 Extremely dry ED 

 
3. RESULTS AND DISCUSSION 
 
3.1 SPI 
 
The Upper Tana Watershed is a relatively wet 
region since most of the SPI values range from 
1.00 to 1.49. Thus any anomaly in precipitation is 
a good indicator for a dry period. Additionally, the 
lowlands are drier as compared to the highlands 
with most values ranging from -1.00 to -1.99 and 
0.99 to 1.49, respectively. Drought years in the 
region as a whole were in 1983, 1987, 1993, 
1996, 2000, 2004, 2005, 2007, 2008, and 2009 
with the driest year being in 2000. The most 
intense drought period was experienced from 
2007 to 2009. Drought years in the highlands 
were in 1987, 1991, 1996, 2000, 2004, 2005, 
2008, and 2009. Alternatively, drought years in 
the lowlands were in 1983, 1984, 1987, 1992, 
1993, 1996, 1999, 2000, 2004, 2005, 2007, 
2008, 2009 and 2013 (Fig. 2.). From the maps, 
drought trend can be identified. The cycle of 
moderate droughts from 1981 to 2013 is two to 
three years while for severe drought is four years 
from 2000 to 2013 since there was no severe 
drought since then. Before year 2000, the 
drought cycle was after longer as compared to 
the drought cycle from 2000 to 2013 which has 
evidently become shorter. SPI has successfully 
been used and is a good index when depicting 
drought severity [49,50]. From the maps, it was 
clear that more drought episodes occurred in the 
lowlands than in the highlands. When the 
mapping of dry events in the region using the 
Soil Water Supply Index, [51] made similar 
observations. Correspondingly, using the [52], 
also observed the same. 
 

3.2 NDVI 
 
From the results, drought years were across the 
entire watershed were in November 1982, April 
1983, November 1987, April 1994, November 
1994, November 1995, April 1998, November 
2000, April 2003, November 2004, November 

2005, November 2007, November 2011, April 
2012 and November 2013. Between the two 
rainy seasons, drought was more prevalent in 
November than in April. The same case was 
seen in the highlands where agro-droughts were 
experienced in April 1994, November 1994, 
November 1995, April 1998, November 2000, 
April 2003, November 2004, November 2005, 
November 2007, November 2011, April 2012, 
and November 2013. On the other hand, in the 
lowlands, November 1994, November 1995, April 
1998, November 2000, April 2003, April 2004, 
April 2005, April 2007, November 2007, April 
2012 and November 2013 were the drought 
years (Fig. 3 a & b). April showed more drought 
susceptibility and changes in NDVI than in 
November. The most intense agricultural drought 
was in 1994  
 
The NDVI is a numerical sign used for evaluation 
of vegetation. By measuring the deviations of the 
present NDVI from the normal conditions, the 
drought severity can be expressed since the 
values by themselves are not a reflection of 
drought or non-drought conditions [53]. From the 
NDVI maps, it is evident that during drought 
periods, the coverage area was widespread. This 
is consistent with the findings of [54]. There is a 
limited correlation between NDVI as an 
agricultural drought index and SPI as a 
meteorological drought index since other factors 
such as temperature, soil moisture content and 
humidity influence vegetation [55]. This is 
explained by the time lag that exists between 
meteorological drought and agricultural drought. 
For instance, despite the normal precipitation in 
1994 and 1995, the vegetation in the region 
during those two years was not reestablished 
back to their normal conditions. [56] Made a 
similar observation, although a good agreement 
between three-month precipitation and peak 
NDVI has been observed [54,57]. 
 

Overall, the results show that the drought cycle 
changed in recent years. Drought events have 
become more frequent with a 2 to 3 years return 
period [14,58]. This gives no time for the study 
region to recover from the impacts of drought. 
The highlands showed more resilience to drought 
than the lowlands that seemed to be more 
susceptible to drought since the highlands are 
characterised by humid and semi-humid climate 
and the lowlands are categorised as semi-arid 
climate [51,52]. This is evident with the 
increasing trends of moderate to severe droughts 
from SPI and NDVI values in the lowlands [3]. 
Made a similar observation. 
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Fig. 2. Yearly SPI maps of the Upper Tana Watershed from 1981 to 2013 
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Fig. 1(a). NDVI maps of the Upper Tana River Watershed from 1981 to 2000 
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Fig. 3(b).  NDVI maps of the Upper Tana River Watershed from 2001 to 2013 
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4. CONCLUSION 
 
Overall, agricultural and meteorological droughts 
in the have been experienced in a relatively 
same interval during the study period. However, 
the lowlands were hit more by meteorological 
drought as compared to the highlands. Both the 
highland and the lowlands experienced the same 
drought periods for agricultural drought across 
the study period. The most severe 
meteorological drought was experienced in 2007-
2009 while for agricultural drought was in 1994-
1995. Meteorological drought hits first and then 
followed by agricultural drought as per the results 
in the study. Additionally, the cycle of both 
droughts is short since the manifestation of these 
droughts occurs one after the other. 
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