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Abstract

In a class of solving unconstrained optimization problems, the conjugate gradient method
has been proved to be efficient by researchers’ due to it’s smaller storage requirements and
computational cost. Then, a class of penalty algorithms based on three-term conjugate gradient
methods was developed and extend to find solution of an unconstrained minimization portfolio
management problems, where the objective function is a piecewise quadratic polynomial.
By implementing the proposed algorithm to solve some selected unconstrained optimization
problems, resulted in improvement in the total number of iterations and CPU time. It was shown
that this algorithm is promising.
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1 Introduction

Portfolio management problem deals with allocating ones assets among several securities to maximize
the return of assets and to minimize the investment risk, Markowitzs mean variance model[1],
and the solution of his mean-variance methodology has been the center of the consequent research
activities and forms the basis for the development of modern portfolio management theory. Commonly,
the portfolio management problem has the following mathematical description. Assume that there
are n kinds of securities, the return rate of the kth security is denoted as Rk, k = 1, 2, 3, ..., n,. Let
xk be the proportion of total assets devoted to the kth security,

n∑
k=1

xk = 1 (1.1)

In the real setting, due to uncertainty, the return rates Rk, k = 1, 2, 3, ..., n are random parameters.
Hence, the total return of the assets

R(x) =

n∑
k=1

Rkxk (1.2)

is also random. In this situation, the risk of investment has to be taken into consideration.
In the classical model, this risk is measured by the variance of

V (R(x)) = xTV x (1.3)

Therefore, a portfolio management problem can be formulated into the following biobjectives programming
problem

maximizeR(x) = RTx

minimizeV (R(x)) = xTV x (1.4)

subject to eTx = 1

1 ≥ x ≥ 0

where e is a vector of all ones. Up to our knowledge, almost all of the existing models of portfolio
management problems evolved from the basic model(1.4).
Some of the fundamental ways to reformulate (1.4) into a deterministic single-objective optimization
problem has been discussed by Best [2], Yoshimoto [3] Perold [4], Sharpe [5] and lots, they assumed
that the return of each security, the variance, and the covariances among them can be estimated by
the investor prior to decision. Under this assumption, the problem (1.4) is a deterministic problem.
Furthermore, if an aversion coefficientλ is introduced, the problem (1.4) can be transformed into
the following standard quadratic programming problem.

minimizef(x) = −1(1− λ)ηTx+ λxTV x

subject to eTx = 1 (1.5)

b ≥ x ≥ a

2



Akinwale and Okundalaye; JAMCS, 31(6): 1-13, 2019; Article no.JAMCS.46074

where η ∈ RT is the expected value vector of R, and a, b ∈ RT are two given vectors denoting the
lower and the upper bounds of decision vector respectively. Obviously, if λ = 0 in (1.5), then it
implies that the return is maximized regardless of the investment risk. On the other hand, if λ = 0
then the risk is minimized without consideration on the investment income. Increasing value of λ
in the interval[0, 1] indicates an increasingly weight of the invest risk, and vice versa. For a fixed
λ ∈ (0, 1), it is noted that (1.5) is a quadratic programming problem. Since it has been shown that
the matrix V is positive semidefinite, the problem (1.5) is a convex quadratic programming (CQP).
For a CQP, there exist a lot of efficient methods to find its minimizers. Among them, active-set
methods, interior-point methods, and gradient projection methods have been widely used since
the 1970s. For their detailed numerical performances, one can see [6-9] and the references therein.
However, the efficiency of those methods seriously depends on the factorization techniques of matrix
at each iteration, often exploiting the sparsity in V for a large-scale quadratic programming. So,
from the viewpoint of smaller storage requirements and computation cost, the methods mentioned
above must not be most suitable for solving the problem (1.5) if V is a dense matrix.

Fortunately, recent research shows that the Three-term conjugate gradient methods can remedy
the drawback in factorization of Hessian matrix for an unconstrained minimization problem. At
each iteration, it is only involved with computing the gradient of objective function. For details
in this direction, see, for example,[10-18]. Motivated by the advantage of the conjugate gradient
methods, the first aim of this paper is to reformulate problem (1.5) as an equivalent unconstrained
optimization problem. Then, we are going to develop an efficient algorithm based on three-term
conjugate gradient methods to find its solution. The effectiveness of such algorithm will be tested
by implementing the designed algorithm to solve some real problems from CUTEr Suite.

The lay out of the paper is as follows: Section 2 is devoted to the reformulation of the original
constrained problem. Some features of the subproblem will be presented. Then, in Section 3, we
are going to develop a penalty algorithm based on Three-term conjugate gradient methods. Section
4 will provide applications of the proposed algorithm. The last section concludes with some final
remarks.

2 Reformation

Firstly, for brevity, denote

c = (cj)nx1 = −(1− λ)η, Q = (qij)nxn = 2λV

Then, the problem (1.5) reads

minimizef(x) = cTx+
1

2
xTQx

subject to eTx = 1 (2.1)

a ≤ x ≤ b

Since the covariance matrix V is symmetric positive semidefinite, Q also has such property. Thus,
f(x) is a convex function.

For the equality constraint eTx = 1 and the inequality constraints a ≤ x ≤ b, we define a function
P : Rn+1 → R which is used to describe the constraints violation

P (x; θ) =
θ

2
[(eTx− 1)2 + ||min(x− a, 0)||2 + ||min(b− x, 0)||2 (2.2)

where θ = 0 is called penalty parameter, and ||.|| denotes the 2-norm of vector. If x is a feasible
point of problem (1.5), then
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P (x; θ) = 0 (2.3)

Actually, the larger the absolute value of P (x; θ) is, the further x from the feasible region is.
The function F : Rn+1 → R

F (x; θ) = cTx+
1

2
xTQx+

θ

2
[(eTx− 1)2 + ||min(x− a, 0)||2 + ||min(b− x, 0)||2 (2.4)

is said to be a penalty function of the problem (2.1). It is noted that F has the following features:

1. F is a piecewise quadratic polynomial.
2. F is piecewise continuously differentiable.
3. If Q is positive semidefinite, then F is a piecewise convex quadratic function.

3 Penalty Algorithm Based on Three-term Conjugate
Gradient Method

Among all methods for the unconstrained optimization problems, the conjugate gradient method
is regarded as one of the most powerful approaches due to its smaller storage requirements and
computation cost. It’s priorities over other methods have been addressed in many literatures. The
global convergence theory and the detailed numerical results on the conjugate gradient methods
have been extensively investigated [19-21]. Since the number of the possible selected securities in
the investment management is large and the matrix Q(x; θ) may be dense, it is natural that the
conjugate gradient method is selected to find the minimizer of F for some given θ. However, the
standard procedures of minimizing a quadratic function can not be directly employed. To develop
a new algorithm, we first proposed a rule of updating the coefficients in F.
Regarding the coefficients of the quadratic terms in

θ

2
[(eTx− 1)2 + ||min(x− a, 0)||2 + ||min(b− x, 0)||2 (3.1)

we modify Q = qij according to the following update rule:

qij =


qij i = j
qii i = j ai ≤ xi ≤ bi

(qij + θ) i = j ai > xi or bi > xi

(3.2)

Regarding the coefficients of the linear terms in

θ

2
[(eTx− 1)2 + ||min(x− a, 0)||2 + ||min(b− x, 0)||2 (3.3)

we modify c = cij according to the following update rule:

cij =


ci ai ≤ xi ≤ bi

ci − θai if xi < ai

ci − θbi if xi > bi

(3.4)

The conjugate gradient method will be employed into an ordinary minimization of quadratic
function.

minimizef(x) = c0 + c̄Tx+
1

2
xT Q̄x (3.5)

Q̄ = Q+ θeeT c̄ = c− θe (3.6)
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where θ is a given parameter. It is easy to see that

gx = Q̄x+ c̄ (3.7)

The success of the three-term conjugate method, heavily depends on the choice of the step length
αk and search direction dk i.e, the different choices of the step length and search direction lead to
different convergence properties.

There are three ways to determine the value of the step length, namely: The exact line search, the
inexact line search and use of formula. More often, it is impracticable to use the exact line search.
The use of formula is a recent development which efficiency is still being investigated.

Among the several inexact line searches available, the Armijo rule is adjudged as one of the most
useful and the easiest implementable procedure, Shi [22]. The line search can be described as
follows:
Given s > 0, δ ∈ (0, 1) and σ ∈ (0, 1) find αk = max{s, sδ, sδ2, . . .} such that

f(xk)− f(xk + αkdk) ≥ −σαkg
T
k dk, k = 0, 1, 2, ..., n. (3.8)

One requirement of the search direction dk is the satisfaction of descent condition to guarantee the
attainment of the minimum value of the objective function f(x). The CG method easily satisfy
the descent condition as the current direction to explore for the minimization problems is a linear
combination of the gradient vector and the previous vector i.e,

dk =

{
−gk, k = 0

−gk + βkdk−1, k ≥ 1
(3.9)

where gk = ∇f(xk) and βk is known as the CG coefficient. There are many ways to calculate βi

and some well-known formulae are:

βFR
k =

gTk gk
||gk−1||2

βPR
k =

gTk (gk − gk−1)

||gk−1||2

βHS
k =

gTk (gk − gk−1)

(gk − gk−1)T dk−1

βBAN
k =

−gTk (gk − gk−1)

gTk−1(gk − gk−1)

βDY
k =

gTk gk
dTk (gk − gk−1)

where gk and gk−1 are gradients of f(x) at the points xk and xk−1, respectively, while ||.|| is a norm
of vectors and dk−1 is a direction for the previous iteration. The above corresponding coefficients
are known as Fletcher and Reeves [23], Polak and Ribiere [24], Hestenes and Stiefel [25], Bamigbola-
Ali-Nwaeze [26], Dai and Yuan [27]

The algorithm (1). Conjugate gradient method is as below.

Step 1. Start with an arbitrary initial point x0.
Step 2. Set the initial search direction d0 = −g0.
Step 3. Find the point x1 according to the relation x1 = x0 + α0d0
where α0 is the optimal step length in the direction d0 set k = 1 and go to the next step.
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Step 4. Find gk = g(xk) and set dk = −gk + βkdk−1.
Compute the optimum step length αk in the direction dk and find the new point xk+1 = xk +αkdk.
At the current iterate point xk determinate a search direction

dk =

{
−(Q̄xk + c̄), for k = 0

−(Q̄xk + c̄) + βkdk−1 fork ≥ 1
(3.10)

where βk is chosen such that dk is a conjugate direction of dk−1 with respect to the matrix Q̄.
Along the direction dk choose a step size αk such that, at the new iterate point

xk+1 = xk + αkdk (3.11)

the absolute value of the function F (x; θ) decreases sufficiently.
The following lemma presents a method to determine the search direction.
Lemma (1). If

βk =
(Q̄xk + c̄)Q̄dk−1

dk−1Q̄dk−1

(3.12)

dk = −(Q̄xk + c̄) + βkdk−1 (3.13)

then dkin (3.10)is a conjugate direction of dk−1with respect to Q̄
Proof: Owing to

(dk)
T Q̄dk−1 = −((Q̄xk + c̄) + βkdk−1)

T Q̄dk − 1 (3.14)

(dk)
T Q̄dk−1 = (−Q̄xk + c̄) + (

(Q̄xk + c̄)T Q̄dk−1dk−1

(dk−1)T Q̄dk−1

)T Q̄dk−1 (3.15)

(dk)
T Q̄dk−1 = (−Q̄xk + c̄) + (

(Q̄xk + c̄)T Q̄dk−1dk−1

(dk−1)T Q̄dk−1

∗ Q̄dk−1)
T (3.16)

(dk)
T Q̄dk−1 = 0 (3.17)

the desired result is obtained. Actually, the formula (3.12) is called Hestenes and Stiefel (HS)
method. In the case that the step size αk is chosen by exact linear search along the direction dk,
that is,

αk = − (Q̄xk + c̄)T dk

(dk−1)T Q̄dk
(3.18)

dk =

{
−(Q̄xk + c̄), for k = 0

−(Q̄xk + c̄) + βFR
k dk−1 − βFR

k (
(Q̄xk+c̄)T dk−1

(Q̄xk+c̄)T )Q̄xk+c̄
Q̄xk + c̄) for k ≥ 1

(3.19)

where βFR
k = (Q̄xk+c̄)T Q̄xk+c̄

||Q̄xk−1+c̄||2

Algorithm(2). Penalty Based on Three-term Conjugate Gradient method.

Step 0. (Initialization) Given a starting point θ > 1, λ ∈ [0, 1], σ > 0, ϵ > 0 and ρ. Input the
expected return vector µ , and compute Q and c. Choose an initial solution x0. Set k = 0, i = 0,
and xk = xi.

Step 1 (Reformulation).If

||Q̄xk + c̄|| ≤ ϵ (3.20)

then set

xi = xk (3.21)
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and go to step4; otherwise, go to step2
Step2(Search Direction). Compute the search direction dk by (3.19).
Step3(Inexact line Search). Compute αk by (3.8) and update

xk+1 = xk + αkdk (3.22)

Return to step 1.
Step 4(Feasibility Test). Check feasibility of xi in problem(2.1). If

P (xi; θ) ≤ σ

the algorithm terminates; otherwise, go to step 5.
Step 5 (Update). Set i = 0, xi = xk, θ = ρθ. At the new iterate point xi, modify the matrix Q
and the vector c by (3.2) and (3.4),respectively. Set i = i+ 1, and return to step 1

Remark

(1)In Algorithm(2), the index i denotes the number of updating penalty parameter, and k denotes
the number of iterations of three-term conjugate gradient method for unconstrained subproblem(3.6)
(2) For some fixed θ, it is easy to see that the condition

P (xi; θi) =
θi
2
[(eTxi − 1)2 + ||min(xi − a, 0)||2 + ||min(b− xi, 0)||2 ≤ σ (3.23)

implies that xi is feasible.

Hence, we need to make an assumption based on the objective function
Assumption
Q̄x1: The biobjective function F is twice continuously differentiable.
Q̄x2: The level set L is convex. Moreover, positive constants c1 and c2 exist, satisfying

c1||z||2 ≤ zTF (x)z ≤ c2||z||2 (3.24)

for all z ∈ Rn and x ∈ L where f(x) is the Hessian matrix of F.
Q̄x3: The Hessian matrix is Lipschitz continuous at the point x∗ that is, there exist the positive
constant c3 satisfying

||g(x)− g(x∗)|| ≤ c3||x− x∗|| (3.25)

for all x in a neighborhood of x∗

Lemma 2
In the CG method,

gTk dk−1 = 0. (3.26)

where gk denotes the corresponding gradient.

The following definitions are prerequisites to the proceeding analysis.

Definitions
The search direction dk is said to satisfy
(i) the descent condition if

gTk dk < 0 (3.27)

(ii) the sufficient descent condition if there exists a constant c > 0 such that

gTk dk ≤ −c||gk||2 (3.28)
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Lemma 3
The three-term CG family is a set of descent methods (dk)

T Q̄dk−1 = 0.
Proof.
let gk = Q̄xk + c̄

(dk)
T Q̄dk−1 = −(gk) + βkdk−1 − βk(

(gk)
T dk−1

(gk)T gk
gk)

T Q̄dk−1 (3.29)

(dk)
T Q̄dk−1 = −(gk) + βk(dk−1 − (

(gk)
T dk−1

(gk)T )gk
gk)

T Q̄dk−1 (3.30)

(dk)
T Q̄dk−1 = 0 (3.31)

Also,
The sufficient descent condition if there exists a constant c > 0 such that gTk dk ≤ −c||gk||2 Proof.

gTk dk = −gTk (gk) + βkdk−1 − βk(
(gk)

T dk−1

(gk)T )gk
gk) (3.32)

gTk dk = −gTk gk by Lemma 3.1 (3.33)

gTk dk = −c∥gk∥2 (3.34)

gTk dk < 0 since c > 0 (3.35)

(Global convergence)
Lemma 4
The optimal search parameter c∗ = 3

4
.

Consider 3.19, where βk=βFR
k . we get

gTk dk ≤ −3

4
||gk||2 (3.36)

Proof.

dk = (Q̄xk + c̄) + βFR
k dk−1 − βFR

k (
(Q̄xk + c̄)T dk−1

(Q̄xk + c̄)T )Q̄xk + c̄
Q̄xk + c̄) (3.37)

βFR
k =

(Q̄xk + c̄)T Q̄xk + c̄

||Q̄xk−1 + c̄||2
(3.38)

put (3.38) in (3.37) and multiply through by gTk
For the sake of convenience, let gTk = (Q̄xk + c̄)T

gTk dk = −gTk (gk) +
gTk gk

||gk−1||2
dk−1g

T
k − (gTk gk)

||gk−1||2
gTk (

(gTk dk−1)

gTk gk
gk) (3.39)

From the conjugacy property of CGM, gTk dk−1 = 0. Then(3.39) becomes

gTk dk = −gTk (gk) +
gTk gk

||gk−1||2
dk−1g

T
k (3.40)

We apply the inequality UTV ≤ 1
2
(||U ||2 + ||V ||2) to

gTk dk = −gTk (gk) +
gTk gk

||gk−1||2
dk−1g

T
k (3.41)

gTk gk
||gk−1||2

dk−1g
T
k =

√
2√
2

gTk gk
||gk−1||2

dk−1g
T
k (3.42)
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Let
U = 1√

2
gTk d

T
k−1gkdk−1

V =
√
2gTk dk−1gk

From the conjugacy property of CGM, gTk dk−1 = 0. Then(3.42) becomes

UTV ≤ 1
2(dT

k−1
gk)

2 (
1
2
(dTk gk)

2||gk||2 + 2((gTk dk−1)
2||gk||2)

gTk gk
||gk−1||2

dk−1g
T
k ≤ 1

4
||gk||2 (3.43)

Putting (3.43) in (3.41) we have

gTk dk ≤ −||gk||2 +
1

4
||gk||2 (3.44)

Hence

gTk dk ≤ −3

4
||gk||2 (3.45)

Lemma 5
Under Assumption, positive constants ω1 and ω2 exist, such that for any xk and dk with gTk dk < 0,
the step size ak produced by Algorithm (1) or (2) will satisfy either

f(xk + αkdk)− fk ≤ −ω1
(gTk dk)

2

||dk||2
(3.46)

or
f(xk + αkdk)− fk ≤ ω1g

T
k dk (3.47)

Proof. Suppose that ak < 1, which means that (3.8) failed for a step size

a
′
≤ ak/τ :

f(xk + α′
kdk)− f(x)k ≤ ωa

′
gTk dk (3.48)

Then, by using the mean value theorem, we obtain

f(xk+1)− f(xk) = gT (xk+1 − xk) (3.49)

where g = ∇f(x), for some x ∈ (xk, xk+1). Now by the Cauchy-Schwartz inequality, we get

gT (xk+1 − xk) = gT (xk+1 − xk) + (g − gk)
T (xk+1 − xk) (3.50)

≤ gT (xk+1 − xk)g − gk||(xk+1 − xk) (3.51)

≤ gT (xk+1 − xk) + µ||xk+1 − xk||2 (3.52)

≤ gT (a
′
dk) + µ||a

′
d||2 (3.53)

≤ gT (a′dk) + µa′||d||)2 (3.54)

Thus, from Q̄x3

(ω − 1)a
′
gTk dk < a

′
(g − gk)

T dk ≤ M(a
′
||dk||)2 (3.55)

which implies that

ak ≥ τa
′
> τ(1− ω)

−gTi dk

M(a′ ||dk||)2n
(3.56)

f(xk + α
′
kdk)− f(x)k ≤ c2

−gTk dk

aT ||dk||2
(3.57)

where c2 = τ(1− ω)/M , which gives (3.46)
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4 Numerical Consideration

In this section we use a set of some selected unconstrained optimization problems from the CUTEr
suite (is a versatile testing environment for optimization which contain a collection of test problems
along with fortran and matlab tool). The results obtained using Penalty Algorithm Based on Three-
Term Conjugate Gradient Method(NCGM) compared with Penalty Algorithm Based on Two-Term
Conjugate Gradient Method(CGM) are shown in figure 1 and 2. In our numerical experiments, the
initial solution is chosen to satisfy.

eTx0 = 1 (4.1)

the bound vector a is a vector of all zeros, and b is a vector of all ones. We take the initial penalty
parameter θ = 10 and the aversion coefficient λ = 0.5. The tolerance of error is taken asϵ = 10−7

Each of the test problems is tested with dimensions varying from 2 to 1000. For the Armijo line
search, we use σ = 10−4, the stopping criteria used are ||gi|| ≤ 10−6 and the number of iterations
exceeds a limit of 10,000. Performance profile were drawn for the above methods. In general
p(τ) is the fraction of problems with performance ratio τ ; thus, a solver with high values of p(τ) is
preferable. The implementation, numerical tests was performed on Compaq Presario CQ57-339WM
Notebook PC, Windows 7 operating system, and Matlab 2013 languages.

Figure 1: Performance Profile in a log10 scale based on iteration

Figure 2: Performance Profile in a log10 scale based on CPU time
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Table 1: A list of problem functions

Test Problems n-dimension Sources

Powell badly scaled 2 More et al.[28]

Diagonal1 Function 2 More et al.[28]

Hager Function 6, 6 More et al.[28]

quartc FH1 Function 4, 6 More et al. [28]

Extended Wood Function 4 Michalewicz[29]

FLETCHCR Function 2, 4 More et al.[28]

SINQUAD Function 2 More et al.[28]

Power Functionl 2 Michalewicz [29]

Himmelblau 2 Andrei[30]

Extended Matyas Function 1, 2, 4 ,10 100 More et al.[28]

Extended Powell singular 4, 8 More et al. [28]

Extended Rosenbrock 2, 10, 100, 200, 500, 1000 Andrei[30]

Extended Hebert 2 4 10 Andrei[30]

Extended Cliff 2, 4, 10 More et al.[28]

Six-hump camel back polynomial 2 Michalewicz[29]

Extended Quadratic Penalty QP1 2, 4, 10, 100, 200, 500, 1000 Andrei [30]

Raydan 1 2, 4, Andrei[30]

Raydan 2 2, 4 10 100 200 Andrei[30]

Extended Dixon and Price Function 2 Andrei[30]

Diagonal 9 2 4 10 Andrei[30]

PS1 2 Andrei[30]

Cube 2, 10, 100, 200 More et al.[28]

4.1 Remarks On Computational Results

Performance profiles of methods are illustrated in Figures 1 and 2. The performance profile seeks
to find how well the solvers perform relative to the other solvers on a set of problems.

From Figure 1 and 2, we have that the Penalty Algorithm Based on Three-Term Conjugate Gradient
Method(NCGM) compared with Penalty Algorithm Based on Two-Term Conjugate Gradient Method
(CGM) has the best performance since it can solve (80%) of the test problems.

The computational results above shows that global convergence is achieved from different starting
points on selected unconstrained optimization problems.

5 Final Remark

In this paper, the biobjectives optimization model of portfolio management was reformulated as
an unconstrained minimization problem. Regarding the features of the optimization models in
portfolio management, a class of penalty algorithms based on three-term conjugate gradient method
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was developed. The numerical performance of the proposed algorithm in solving the real problems
verifies its effectiveness.
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