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Abstract

Using a hybrid-kinetic particle-in-cell simulation, we study the evolution of an expanding, collisionless,
magnetized plasma in which strong Alfvénic turbulence is persistently driven. Temperature anisotropy generated
adiabatically by the plasma expansion (and consequent decrease in the mean magnetic-field strength) gradually
reduces the effective elasticity of the field lines, causing reductions in the linear frequency and residual energy of
the Alfvénic fluctuations. In response, these fluctuations modify their interactions and spatial anisotropy to
maintain a scale-by-scale “critical balance” between their characteristic linear and nonlinear frequencies.
Eventually the plasma becomes unstable to kinetic firehose instabilities, which excite rapidly growing magnetic
fluctuations at ion-Larmor scales. The consequent pitch-angle scattering of particles maintains the temperature
anisotropy near marginal stability, even as the turbulent plasma continues to expand. The resulting evolution of
parallel and perpendicular temperatures does not satisfy double-adiabatic conservation laws, but is described
accurately by a simple model that includes anomalous scattering. Our results have implications for understanding
the complex interplay between macro- and microscale physics in various hot, dilute, astrophysical plasmas, and
offer predictions concerning power spectra, residual energy, ion-Larmor-scale spectral breaks, and non-Maxwellian
features in ion distribution functions that may be tested by measurements taken in high-beta regions of the
solar wind.

Unified Astronomy Thesaurus concepts: Alfven waves (23); Interplanetary turbulence (830); Plasma astrophysics
(1261); Solar wind (1534); Space plasmas (1544)

1. Introduction

Many space and astrophysical plasmas are magnetized and
weakly collisional, with the Larmor radii of the constituent
particles being many orders of magnitude below their Coulomb
mean free paths (e.g., Schekochihin & Cowley 2006). This
feature results in a complex interplay between a plasma’s
macrophysical evolution (e.g., due to expansion, compression,
or large-scale shear) and its microphysical response (e.g.,
departures from local thermodynamic equilibrium, triggering of
kinetic instabilities) (Schekochihin et al. 2005; Kunz et al.
2014a; Hellinger & Trávníček 2015; Riquelme et al. 2015;
Sironi & Narayan 2015; Squire et al. 2017; Kunz et al. 2020).
This interplay becomes increasingly complex when that
macrophysical evolution induces or accompanies a cascade of
turbulent fluctuations down to microphysical scales, a situation
thought to be ubiquitous in the solar wind, low-luminosity
black hole accretion flows, and the intracluster medium (e.g.,
Alexandrova et al. 2013; Yuan & Narayan 2014; Simionescu
et al. 2019).

In this Letter, we investigate to what extent the basic
building blocks of strong, incompressible, Alfvénic turbulence
—namely, the existence of a conservative cascade from large
(injection) to small (dissipative) scales, the locality of
interactions between turbulent fluctuations, and a scale-by-
scale balance between the characteristic linear oscillation time

of the fluctuations and their nonlinear interaction time known
as “critical balance” (Goldreich & Sridhar 1995; Mallet et al.
2015; Schekochihin 2020)—survive when subject to micro-
physical constraints dictated by the kinetic evolution of a
collisionless plasma. Theoretical work describing magnetized
turbulence in weakly collisional or collisionless plasma, but
adopting a pressure-isotropic background, suggests that these
organizing principles endure, with a local, conservative,
Alfvénic cascade extending from macroscopic scales down to
the ion-Larmor scale (Schekochihin et al. 2009). However, the
assumption of an isotropic background pressure is not always
justified; instead, the pressure tensor is more naturally
anisotropic with respect to the magnetic field, with the
evolution of field-parallel and perpendicular pressures influ-
enced by approximate adiabatic invariance of the charged
particles. How this pressure anisotropy alters the properties of
Alfvénic turbulence has been a question of particular interest in
recent years (e.g., Klein & Howes 2015; Kunz et al.
2015, 2018; Markovskii et al. 2019).
To address this question, we use results from a hybrid-

kinetic simulation in which strong Alfvénic turbulence is
driven in a collisionless, magnetized plasma undergoing steady
expansion transverse to a mean magnetic field. This expansion
drives pressure anisotropy in the plasma through approximate
adiabatic invariance. We find that, despite the consequent
decrease in the characteristic linear frequency and Alfvén ratio
of the fluctuations, the Alfvénic cascade adapts to maintain
critical balance. Eventually the plasma becomes unstable to
kinetic firehose instabilities, which grow rapidly on ion-Larmor
scales, scatter particles, and thereby impede the further
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production of pressure anisotropy. Even in this state, critical
balance of the Alfvénic cascade persists, with the majority of
the turbulent motions remaining stable.

2. Theoretical Considerations and Method of Solution

2.1. Why Expansion?

Of the various types of macroscopic evolution that a
turbulent, collisionless magnetized plasma can undergo, there
are two compelling reasons to consider expansion.

First, plasma expansion on a timescale texp much larger than
the inverse cyclotron frequency W-

s
1 of each particle species s

(ä {e, i} for an electron-ion plasma) provides a natural way to
drive temperature anisotropy, Δs≡ T⊥s/T∥s− 1≠ 0, where
T⊥s (T∥s) is the field-perpendicular (-parallel) component of the
temperature of species s. For example, as plasma expands
transversely to a mean magnetic (“guide”) field, mass and
magnetic-flux conservation dictate that the mean number
density ns of each species s and the guide-field strength Bg

satisfy µ ^
-n B L,s g

2, where L⊥ is the characteristic transverse
size of the plasma (taken to be much larger than the thermal
Larmor radius ρs of each species; the characteristic parallel size
L∥ is held fixed). Combined with conservation of the first and
second adiabatic invariants, viz. T⊥s∝ Bg and µT n Bs s g

2( )
(Chew et al. 1956; hereafter, CGL), these scalings imply a
decreasing T⊥s while T∥s remains approximately constant.
Thus, if Δs= 0 initially, then it becomes increasingly negative.
Simultaneously, the parallel plasma beta parameters,
b pº n T B8s s s g

2
  , increase. That the combination β∥sΔs grows

increasingly negative has two important consequences. First,
the effective Alfvén speed
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drops below the conventional Alfvén speed vA, tending toward
zero as ∑sβ∥sΔs→−2 (at which point there is no energetic
cost to bending the field). Thus, the effective tension in the
magnetic-field lines is reduced, with Alfvén waves becoming
unstable for ∑sβ∥sΔs<−2 (the “fluid firehose” threshold;
Chandrasekhar et al. 1958; Parker 1958). Concurrently, when
β∥sΔs−1 the plasma becomes unstable to the kinetic parallel
and oblique firehoses (Yoon et al. 1993). For plasma with
β∥i≈ 2–4 and Maxwellian electrons, the oblique firehose
operates when bD - - 1.4i i

1
 (Hellinger & Matsumoto 2000),

while the growth rate γf of the (threshold-less) parallel firehose
satisfies γf 10−3Ωi for bD - - 1.1i i

1
 (Matteini et al. 2006).

Both effects prompt several questions, including whether
critical balance persists during the expansion, how the kinetic
instabilities interact with the Alfvénic turbulence, and whether
the turbulent motions themselves become unstable and disrupt
the cascade.

The second reason to consider the problem of expanding
Alfvénic turbulence is its relevance to the solar wind. A parcel
of solar-wind plasma initially located at a large distance
R? L⊥, L∥ from the Sun and moving radially outwards at
speed vsw will undergo (approximately linear) expansion on a
characteristic timescale t = R vexp sw (e.g., Matteini et al.
2012). Expansion is thought to play an important role in
various key physical processes in the solar wind, including
plasma heating, the generation of turbulence, and kinetic

physics such as the production of temperature anisotropy (Velli
et al. 1989; Verdini & Velli 2007; Chandran & Hollweg 2009;
Matteini et al. 2013; Chandran & Perez 2019). There have
therefore been many complementary investigations of expand-
ing plasmas in the solar-wind context (e.g., Grappin et al. 1993;
Liewer et al. 2001; Matteini et al. 2006; Camporeale &
Burgess 2010; Hellinger et al. 2015; Hellinger 2017; Hellinger
et al. 2019; Squire et al. 2020).

2.2. Hybrid-kinetic Description of Expanding Alfvénic
Turbulence

We adopt a hybrid-kinetic approach to solve for the
multiscale dynamics of Alfvénic turbulence in a collisionless,
expanding plasma. A nonrelativistic, quasi-neutral (n≡ ni= ne)
plasma with kinetic ions (mass mi, charge e) and massless, fluid
electrons is threaded by a uniform magnetic field =B zBg g ˆ and
subjected to a random, time-correlated, solenoidal driving force
F(t, r) ⊥ Bg. This driving is the same as described in
Arzamasskiy et al. (2019); it is designed to mimic the action
of random inertial forces arising from an anisotropic cascade of
turbulent fluctuations at scales larger than the simulation
domain. The electrons are assumed to be pressure-isotropic and
isothermal with temperature Te= Ti0, the initial ion temper-
ature. A fourth-order hyper-resistivity is used to remove
magnetic energy at the smallest scales.
The subsequent evolution of this plasma is solved using

the second-order–accurate, particle-in-cell code Pegasus++
(Arzamasskiy et al. 2021, in preparation), which is an
optimized implementation of the algorithms detailed in Kunz
et al. (2014b). Well-resolved 3D hybrid-kinetic simulations of
Alfvénic turbulence are essential for modeling this problem, in
particular for simultaneously capturing both the turbulent
cascade above and below ion-Larmor scales and the physics of
ion-firehose instabilities. That being said, our treatment of the
electrons as an isothermal, isotropic fluid precludes any kinetic
instabilities driven by electron temperature anisotropy (e.g., the
electron firehose; Li & Habbal 2000). While the properties of
inertial-range Alfvénic fluctuations and ion-scale firehose
instabilities are not expected to be affected appreciably by
electron kinetics, it remains an open question as to how
electron anisotropy affects the sub-ion-Larmor cascade of
kinetic Alfvén waves (KAWs; see Sections 3.6.2, 4.4, and 4.5
of Kunz et al. 2018). For now, we simply note that, in the near-
Earth solar wind, the electrons’ collisional age seems to control
the electron temperature anisotropy (Salem et al. 2003) and the
total temperature anisotropy at β 1 is dominated by protons
(Chen et al. 2016). By modeling only a single ion species
(protons), our simulations also preclude some other effects
thought to be relevant in the solar wind, e.g., instabilities driven
by drifting helium ions (Verscharen et al. 2019).
To model the expansion, Pegasus++ enacts a coordinate

transform from a comoving, nonexpanding frame (position
vector r) to the comoving expanding frame (position vector ¢r )
using the time-dependent (diagonal) Jacobian transformation
matrixL º ¶ ¶ ¢r rt( ) , as in the Hybrid Expanding Box (HEB)
model of Hellinger & Trávníček (2005, Appendix A).
Pegasus++ solves the following modified versions of Fara-
day’s and Ohm’s laws in the expanding frame for the magnetic
field lL¢ º -B B1 and the electric field L¢ ºE E:

¶
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where the primed-frame number density l¢ ºn n and ion-flow
velocity L¢ º -u u1 , l Lº det , and ¢ =t t. These fields are
used to update the simulation ion-particle positions L¢ = -r rp p

1

and velocities L¢ = -v vp p
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The final (velocity-dependent) term in Equation (5) is
straightforwardly incorporated into the semi-implicit Boris
algorithm for solving particle trajectories alongside the
¢ ´ ¢v Bp rotation. Quantities in the nonexpanding frame are
easily obtained ex post facto.

The expansion is taken to be perpendicular to ẑ and linear in
time: tL = + + -zz zzt t1 exp I( ) ˆ ˆ ( )( ˆ ˆ), where texp is the
expansion time and I the unit dyadic. Thus the perpendicular
size of the simulated plasma increases in time as =^L t( )

t+^L t10 exp( ), while the parallel size of the simulated
plasma remains constant, L∥(t)= L∥0. (We denote any given
quantity X evaluated at the start of the simulation by X0.)
Magnetic-flux conservation then gives

t= + -B t B t1g g0 exp
2( ) ( ) . This prescription is physically

relevant to the expanding solar wind at 0.1 au, on account
of the solar wind’s constant speed and radial direction at those
distances (Verscharen et al. 2019), although our treatment of
the mean magnetic field as radial is a simplifying assumption.

2.3. Physical Setup

At the start of the simulation (time t0), Nppc= 103 simulation
ion-particles per cell are drawn randomly from a stationary
Maxwellian distribution with temperature Ti0 and number
density n0 and placed uniformly in an elongated 3D computa-
tional domain of size r r´ ´ = ´L L L 65 390x y z i i0

2
0( ) con-

taining 2562× 1536 cells. At this box size and resolution, the
captured wavenumbers are initially in the ranges k(x,y)ρi0ä
[0.097, 12.37] and kzρi0ä [0.016, 12.37]. The initial ion beta
parameter is β∥i0= 2, representative of near-Earth conditions in
the solar wind (Matteini et al. 2007). Prior to initiating
expansion, steady-state Alfvénic turbulence is generated in the
plasma by forcing the particles with an F(t,r) having the
correlation time τA0/2π, where t º » W-L v 552z iA0 A0 0

1 is the
initial Alfvén-crossing time, pºv B m n4 iA0 g0 0

1 2( ) is the initial
Alfvén speed, and Ωi0≡ eBg0/mic is the initial ion-cyclotron
frequency. The magnitude of the force is such that critical
balance is maintained for the box-scale fluctuations: urms/vA0≈
L ⊥/L∥, where urms is the rms turbulent velocity. Assuming
a−5/3 power-law scaling for turbulent fluctuations on scales
larger than the box, the inferred perpendicular wavenumber at
which the energy of the turbulent fluctuations becomes
comparable to that of the guide magnetic field is

r~^
- -k 10 i

outer 3
0
1, a comparable degree of separation to that

observed in the fast, β 1 solar wind (Wicks et al. 2010). This
initial nonexpanding phase of the simulation lasts for five

Alfvén-crossing times until t= 0, so that t= - »t 50 A0

- W-2758 i0
1. The turbulent magnetic fields at t= 0 are visualized

in Figure 1(a).
The plasma’s expansion is then initiated as described in

Section 2.2, with t t= » W-10 5515 iexp A0 0
1. This expansion

time is comparable to the inferred Alfvén-crossing time at the
outer scale ~ k̂1 outer/ of the turbulence. It also means that the
turbulent heating time t t~ ^ T L m u3 2 5i iheat rms

3
exp( ) ( ) in

our simulation; as a result, the thermodynamic evolution of the
plasma is dominated not by turbulent heating but rather by the
approximately double-adiabatic expansion and the feedback
from firehose instabilities.

Figure 1. Volume rendering of the x component of the magnetic field, δBx/Bg,
(a) just prior to expansion, (b) when the firehose modes emerge, and (c) near
the end of the run well after one expansion time. Regions where |δBx|/Bg is
small are transparent.

3
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As the plasma expands, strong Alfvénic turbulence is driven
continuously such that » =^u t L t v t L constrms A( ) ( ) ( )  . In
retrospect, our results suggest that a more realistic forcing
prescription would maintain critical balance adaptively at the outer
scale using vA,eff instead of vA. However, this prescription requires
a priori knowledge of the temperature anisotropy’s evolution to
evolve vA,eff(t) and, moreover, becomes problematic if vA,eff were
to approach 0. In practice, we find the only consequence of using
vA(t) to determine the forcing amplitude to be a slight excess of
energy in the turbulent fluctuations at the outer scale.

3. Results

The overall plasma evolution is summarized in Figure 2. Panel
(a) shows that the box-averaged magnetic-field strength
B(t) and density n(t) decrease in tandem once the expansion
begins, with t» = + -B t B n t n t1g0 0 exp

2( ) ( ) ( ) . The rms
field strength actually decreases slightly slower due to the
growth of the turbulent Alfvénic fluctuations, δBrms, relative
to Bg(t) as the plasma expands (Figure 2(b)). This growth,
also evident in Figure 1, is caused by wave-action conservation
and by the build-up of residual magnetic energy in the
fluctuations from the reduced energetic cost of bending
field lines in a plasma with Δi< 0. Namely, the Alfvén ratio

p dºr m nu B4 iA rms
2

rms
2 becomes smaller than unity as the

expansion proceeds, an effect that may be compensated by instead
using the “kinetic normalization” bº + D -r r 1 2i iA,eff A

1( )
(Chen et al. 2013). The associated relation d »B Brms g

b+ D - u v1 2i i
1 2

rms A( ) , when combined with critical
balance of the box-scale fluctuations, viz. ~urms

t bµ + + D^L t L v t t t t1 1 2i iA,eff exp
1 2[ ( ) ] ( ) ( )[ ( ) ( ) ] 

(Figure 2(b), dashed red line), implies d tµ +B B t1rms g exp( )
(Figure 2(b), dashed blue line), a manifestly good fit to the data.

Another key property of Alfvénic turbulence in an expanding
collisionless plasma is the decreasing characteristic frequency of

the fluctuations. This feature is demonstrated by Figure 2(c), in
which the red pluses track the time evolution of the energetically
dominant (“peak”) oscillation frequency of the fluctuations,
ωpeak.

5 While some decrease in ωpeak is caused by the
decreasing Alfvén speed, t= + -v v t1A A0 exp

1( ) (dashed blue
line), it is mostly due to the reduction in the effective Alfvén
speed caused by β∥iΔi becoming increasingly negative. Indeed,
the effective Alfvén frequency of the box-scale fluctuations,
2πvA,eff/L∥ (solid blue line), matches the data well.
The production of negative temperature anisotropy

during the expansion is shown in Figure 2(d). During the
initial phase, the parallel (blue line) and perpendicular (red line)
ion temperatures evolve approximately double-adiabatically:
T⊥i(t)≈ T⊥i(0)[B(t)/B(0)] (dashed red line) and »T ti ( )

-T n t n B t B0 0 0i
2 2( )[ ( ) ( )] [ ( ) ( )] (dashed blue line). However,

at t» ºt t 0.4f exp, an abrupt change in the evolution of T⊥i(t)
and T∥i(t) occurs, and the double-adiabatic predictions no
longer hold. This change is coincident with Δi decreasing
sufficiently (and β∥i increasing sufficiently—see Figure 2(e))
that Δi−1.4/β∥i (see Figure 2(f)), at which point the plasma
is unstable to kinetic firehose instabilities. Such firehose
fluctuations, visually evident near the ion-Larmor scale in
Figure 1(b), are characterized later in this section.
Figures 3(a) and (b) display 1D power spectra of the velocity

(Eu) and magnetic (EB) fluctuations at select times as functions
of the perpendicular wavenumber k⊥ normalized to the time-
dependent ion-Larmor scale, r º WT̂ t m t2i i i i

1 2[ ( ) ] ( ). Their
overall shapes are similar to those found in prior hybrid-

Figure 2. (a) Evolution of box-averaged B and n, normalized by their initial values. (b) Evolution of δBrms/Bg and urms/vA (solid lines), compared with their
theoretical expectations (dashed lines; see the text). The dotted–dashed blue line traces b d+ D B B1 2i i

1 2
rms g( ) , for which the kinetic-normalized Alfvén ratio

rA,eff = 1. (c) Evolution of the spectral-peak frequency ωpeak (normalized by 2π/τA0) of the magnetic fluctuations (red pluses), compared to the outer-scale Alfvén
frequency (dashed blue line) and effective Alfvén frequency (solid blue line). Vertical error bars on ωpeak represent standard errors; horizontal error bars represent the
size of the Gaussian window function used to obtain the time-dependent frequency spectra. (d) Evolution of box-averaged T⊥i and T∥i, normalized by their initial
values (solid lines), with their double-adiabatic predictions (dashed lines) and those from our anomalous collisionality model (dotted–dashed lines). (e) Evolution of
β∥i and b pº^ ^nT B8i i g

2, with their double-adiabatic counterparts (dashed lines) and those from our anomalous collisionality model (dotted–dashed lines).
(f) Evolution of Δi (blue solid line) compared with its double-adiabatic prediction (blue dashed line). The (approximate) threshold for the kinetic firehose instability in
a bi-Maxwellian plasma, Δi = −1.4/β∥i (solid red line), is shown.

5
ωpeak is computed using time series of high-cadence magnetic-field data

recorded during the simulation at 27 fixed points in space. These series are
Fourier transformed and the frequencies corresponding to the peaks of their
corresponding energy spectra are algebraically averaged. To isolate the peak
frequency at a particular time, a Gaussian window function (FWHM

tD =t 0.2 exp) centered at that time is applied to each series before Fourier
transforming.

4
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kinetic simulations of nonexpanding, β∥i∼ 1 turbulence (e.g.,
Arzamasskiy et al. 2019): µ^ ^ ^

-E k E k k,u B
5 3( ) ( ) in the

inertial (“MHD”) range, before steepening at k⊥ρi 1 due to
finite-Larmor-radius effects. The “break point” at which this
steepening occurs, rk̂ i break( ) (blue curve, Figure 3(b) inset),
decreases at a rate quantitatively consistent with theoretical
expectations (Kunz et al. 2018, Section 3.6.4) that

r b bµ + D^
-

^k T T1 2 6i i i i i ibreak
1 4 1 4 1 2( ) ( ) ( ) ( )  

(red curve, Figure 3(b) inset).6 These spectral features are
maintained throughout the expansion, even for t tf.

Having provided evidence that various properties of the large-
scale fluctuations adapt to the changing background pressure
anisotropy in a manner consistent with critical balance, we now

utilize the spectra in Figure 3 to show that critical balance is in fact
maintained adaptively, scale by scale, as the plasma expands. We
do so by computing the spectral anisotropy of the fluctuations
using an approach proposed by Cho & Lazarian (2009) in which
the characteristic parallel wavenumber k∥(k⊥) of magnetic-field
fluctuations with perpendicular wavenumber k⊥ is determined
from their rms parallel lengthscale (see their Equation (34)). For
fluctuations with a given k⊥, this measure is most sensitive to the
energetically dominant fluctuations with the largest k∥, and so the
approach can be used to determine the linear frequency
ωA≡ k∥vA,eff of these fluctuations and compare it with their
nonlinear frequency w º +^ ^ ^ ^ ^k k E k v k E k Bu Bnl A,eff

2
g
2 1 2[ ( ) ( ) ] .

In critically balanced turbulence, the turbulent energy is
concentrated in a cone satisfying ωAωnl, with the edge of the
cone having µ ^k k2 3

 (Goldreich & Sridhar 1995).
The result of this calculation is shown at different times in

Figure 3(c). At t= 0, the measured spectral anisotropy in the
inertial range is consistent with the critical-balance scaling

µ ^k k2 3
 . As the expansion proceeds, this scaling is maintained
as the overall degree of anisotropy decreases in tandem with the
decreasing aspect ratio of the plasma. Furthermore, the inset
shows that ωA≈ωnl scale by scale; thus critical balance holds
adaptively. At t≈ tf, firehose modes (which, unlike the Alfvénic
fluctuations, are not highly elongated in the field-parallel direction)
emerge and bias slightly the calculated scaling of k∥(k⊥) in the
inertial range. To mitigate this bias, a weight function is applied to
the magnetic field that preferentially removes firehose-unstable
regions before evaluating k∥. Using this weight function, adaptive
critical balance of the Alfvénic cascade is seen to persist.7

In summary, no dramatic alterations to the fundamental
nature of the Alfvénic turbulence are observed during
expansion, even when kinetic-scale firehose modes are present.
Importantly, there is no noticeable destabilization of the
inertial-range Alfvénic cascade. This result is due to the
efficient regulation of the box-averaged temperature aniso-
tropy, which (as shown in Figure 2(f)) barely drops below
Δi≈−1.4/β∥i. While this value of Δi is negative enough to
destabilize the plasma to kinetic firehose instabilities, it is
above the “fluid” firehose instability threshold Δi=− 2/β∥i
below which v 0A,eff

2 and Alfvén waves cease to propagate.
The character of the kinetic-scale firehose fluctuations can be

ascertained by examining the 2D Fourier spectrum of the
magnetic field EB in º +k k k k,r x y z

2 2 1 2[ ( ) ] space. At
tt 0.32 exp (Figure 4(a), top), spectral power is concentrated

in the region of (kr, kz) space that satisfies kz= kr, affirming
the quasi-perpendicular nature of the Alfvénic cascade.
By t=t 0.4 exp (Figure 4(a), bottom), an additional region
with spectral power is clearly visible, with its centroid located at
(krρi, kzρi)≈ (0.4, 0.3). We associate this power with growing
oblique firehose fluctuations.8 These fluctuations can be visu-
alized by isolating the “firehose” part δBx,f of the magnetic field
using a Fourier-space mask that filters out quasi-perpendicular

Figure 3. Evolution of (a) kinetic and (b) magnetic energy spectra, each
obtained by averaging Fourier amplitudes over a time interval of size τA0. The
inset of panel (b) shows the evolution of the spectral break point in the
magnetic energy. (c) Instantaneous spatial anisotropy of turbulent fluctuations
as a function of perpendicular scale. At t=t 0.4 exp, the calculation of the
anisotropy is weighted toward firehose-stable regions with β∥iΔi � −1.4 (see
the text); the anisotropy of the full field is denoted by the dashed line. The inset
of panel (c) shows the instantaneous ratio of linear Alfvén frequency ωA(t) and
nonlinear frequency ωnl as a function of perpendicular scale. Adaptive critical
balance (ωA/ωnl ∼ 1) holds throughout the inertial range.

6 The break point rk̂ i break( ) is computed at a given time by first evaluating

òº -
~

^ ^ ^ ^ ^
^

^E k k E k k kdB k

k
B0

5 3
u l

l

u ( ) ( )/ , where k⊥l and k⊥u define the lower

and upper bounds of the inertial range, and then determining the value of k⊥ at
which ^ ^k E kB

5 3 ( ) falls below some fraction of
~
EB0, denoted by

~
EB,cut. We use

k⊥lρi = 0.4, k⊥uρi = 0.8, and =
~ ~
E E0.8 ;B B,cut 0 the result is qualitatively

insensitive to moderate variations in these parameters.

7 The weight function at a given time t is constructed by first identifying all
cells in which, when time averaged over an interval of size τA0/2 prior to time
t, the firehose instability parameter β∥iΔi � −1.4. These regions are then
masked, with the edges of the mask smoothed by a Gaussian filter of scale
4πρi.
8 In principle, parallel firehose fluctuations sitting atop local field-line
deformations caused by the Alfvénic turbulence could also appear as oblique
modes in (kr, kz) space. However, the characteristic angular deviation of the
magnetic-field lines associated with the Alfvénic turbulence is relatively small
(θA ≈ 19°), while the observed modes have θ ≈ 53°. We thus conclude that the
emergent region of spectral power seen in Figure 4(a) at t=t 0.40 exp is caused
by the oblique firehose instability.
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modes; the region of (kr, kz) space identified as the firehose part is
indicated by the shaded region in Figure 4(a). While the Alfvénic
turbulence does not evolve qualitatively during the time interval
t Ît 0.32, 0.40exp [ ], the firehose fluctuations increase their

amplitudes significantly (see Figure 4(b)). Figure 4(c), which
shows the evolution of the magnetic energy of ion-Larmor-scale
modes at different angles to the guide field, confirms that oblique
firehose modes are unstable, with maximum growth rate
comparable to that predicted by linear theory at β⊥i≈ 3.6 and
Δi≈−0.4, viz. g t» W »^

-0.02 120if exp
1 at (kf⊥ρi, kf∥ρi)≈ (0.4,

0.3). Parallel firehose modes (measured in region III of
Figure 4(a)) are also unstable, but they have a significantly
smaller amplitude than the oblique modes.

The firehose fluctuations efficiently regulate the temperature
anisotropy, even though their saturated rms magnetic-field
strength is much smaller than that of the Alfvénic fluctuations
at equivalent wavenumbers. They do so by pitch-angle
scattering the ions so that the particles’ first adiabatic invariants
(m º ^m v B2i

2 , where v⊥ is the peculiar perpendicular
velocity) are no longer conserved (see Figure 4(d), orange
line). The effective collisionality of this anomalous scattering,
νc, may be estimated using the relation m n= - DT Bic( ) ,
where the overline denotes a box average, ΔTi≡ T⊥i− T∥i, and
m is the rate of change of m º T̂ Bi . Figure 4(d) indicates that
t n 1exp c  for t< tf (i.e., μ is approximately conserved pre-
firehose), while t n ~ 1exp c for t tf (i.e., μ is significantly
broken by the firehose fluctuations).

A simple model for νc may be constructed by adopting three
assumptions: (i) that n(t)/n0≈ B(t)/Bgo; (ii) that contributions
from heat fluxes and turbulent heating to the temperature
anisotropy are negligible (the latter being because t t ;heat exp
see Section 2.3); and (iii) that b D » consti i after t= tf. Under

these conditions, the CGL equations (including collisions) become
n= - D^ ^T B t T Td ln di i i ic( ) ( ) and »T B n td ln di

2 2( )
n= DT td ln d 2i ic . The third assumption then implies n »c

nD º- B t3 d ln di
CGL1
c( ) . The agreement between this model

(Figure 4(d), blue line) and νc evaluated directly from the
simulation is good, although νc fluctuates significantly. A direct
calculation of the mean μ-breaking time of∼ 104 tracked particles,
following Kunz et al. (2014a, 2020) and Squire et al. (2017), yields
an effective collisionality nCGL

c for t tf. Setting n n= CGL
c c

in the above equations leads to a simple equation for the
parallel temperature, =T B td ln d 0i

2 3( ) , so that »T ti ( )

T t B t B ti f f
2 3( )[ ( ) ( )] . Further setting Δi≈−1.4/β∥i yields

p» -T̂ t T t B t n t1.4 8i i g
2( ) ( ) ( ) ( ) . This model is plotted in

Figure 2(d); given its simplicity, its agreement with the actual
result is remarkable.
The regulation of temperature anisotropy can be elucidated

further by considering PDFs of the simulation data in the
(β∥i, Δi) phase space (e.g., Bale et al. 2009). Figure 5(a) shows
these PDFs at different stages: at the expansion’s start (t= 0),
at t= tf, and more than a full expansion time after t= 0; the
phase-space trajectory of the PDF’s average is indicated in the
final panel by the black solid line. In all three cases, the
relatively small dispersion in β∥i and Δi is consistent with the
small rms amplitude of the turbulent fluctuations. The
temperature anisotropy clearly approaches the oblique firehose
instability threshold Δi=−1.4/β∥i (dashed line) and subse-
quently evolves along marginal instability.
Despite the success of our collisionality model, the

compartmentalization of all of the kinetic physics into an
effective collision frequency hides some interesting emergent
features in the ion distribution function f (v∥, v⊥). Figure 5(b)

Figure 4. (a) Fourier spectrum of magnetic-field fluctuations in (kr, kz) space at t=t 0.32 exp and t0.40 exp. The Alfvénic cascade is spectrally anisotropic, with
q »k k ktan 0.34z r rA (white dotted–dashed line); firehose fluctuations emerge in regions II and III. (b) 2D slice of δBx and its “firehose” part δBx,f at the same times

in the plane x = L⊥/2 (cf. the right-hand face of the box in Figure 1(b)). The Fourier-space mask used to separate out the firehose part is indicated in panel (a) by the
shaded region. (c) Evolution of magnetic energy for fluctuations with k ä [0.85, 1.15]kf (where kf is the firehose wavenumber predicted from linear theory) in three
different wavevector-angle bins (measured with respect to the guide field and labeled I, II, and III in panel (a), bottom). (d) Evolution of box-averaged first adiabatic
invariant (orange line), effective collisionality νc (red line), and model collisionality nCGL

c for t > tf (blue line).

6

The Astrophysical Journal Letters, 922:L35 (9pp), 2021 December 1 Bott et al.



shows the difference between f and a Maxwellian distribution
with the same temperature as f at three different times during
the expansion (with all velocities normalized by the initial
thermal speed ºv T m2i i ith 0 0

1 2( ) ). For comparison, the
difference between f and a bi-Maxwellian distribution with
the same values of T∥i and T⊥i as f is also shown. Prior to the
start of the expansion, the slight deficit of particles with
(peculiar) parallel velocities v∥ just below the Alfvén velocity
vA (Figure 5(b), left panel) is indicative of collisionless
damping of the (kinetic) Alfvénic fluctuations. Once the
expansion begins, these deviations are dwarfed by the
expansion-driven temperature anisotropy (Figure 5(b), middle
panel), which, on account of approximate double-adiabaticity,
causes f to look like a bi-Maxwellian. However, by late times in
the simulation, significant deviations from a bi-Maxwellian are
evident (Figure 5(b), right panel), a finding seen in previous
studies of the firehose instability (e.g., Hellinger 2017). In
particular, the distribution function integrated over

perpendicular velocities, òº
¥

^ ^f v v v fd
0

( ) , exhibits a flat-
tened core (Figure 5(c)); the distribution function integrated
over parallel velocities, òº^ -¥

¥
f v v fd( )  , shows that the

anisotropy of the distribution function at subthermal velocities
is much more pronounced than in a bi-Maxwellian. These
features can be attributed to resonant interactions between ions
and the oblique firehose modes (Bott et al. 2021, in
preparation).

4. Discussion

That the nonlinear interactions between Alfvénic fluctuations
adapt to satisfy critical balance, even as the characteristic linear
frequency of those fluctuations is reduced by pressure
anisotropy, is a vivid illustration of the complex interplay
between velocity space and configuration space that is central
to collisionless plasma physics. This interplay is made richer at
β 1 by the emergence of ion-Larmor-scale firehose fluctua-
tions, which establish a direct link between the microscales and

Figure 5. (a) PDF of data in (β∥i, Δi) phase space at t = 0 (left), t = tf (middle), and t= +t t 0.8f exp (right). For each panel, β∥i and Δi are averaged over a time
interval of gW ~-

^
-100 i0

1
f

1 and spatially averaged (using a Gaussian filter) over a scale 4πρi ∼ 2π/kf⊥. The phase-space trajectory of (βı, Δi) associated with
Figures 2(e) and (f) is traced by the solid line; its double-adiabatic counterpart is traced by the dotted–dashed line. (b) (v∥, v⊥)-space plots at the same times of (right-
hand side of each plot) the difference between the (gyro-averaged) ion distribution function f and a Maxwellian distribution function fM with the same temperature; and
(left-hand side of each plot) the difference between fM and a bi-Maxwellian distribution function fbiM with the same parallel and perpendicular temperatures as f. All
distribution functions are normalized so that ò ò =

-¥

¥ ¥
^ ^v v v fd d 1

0 , with v∥ and v⊥ being the peculiar parallel and perpendicular velocities. The dashed line in the

left panel indicates v∥ = vA0. (c) Parallel ( f (v∥)) and perpendicular ( f (v⊥)) distribution functions at the same times. Dashed lines denote the corresponding fbiM.
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macroscales by regulating the pressure anisotropy and thereby
controlling the effective tension of magnetic-field lines. Despite
the small-scale injection of magnetic energy by the firehose,
those fluctuations are not sufficient in amplitude to contribute
significantly to the magnetic power spectrum (at least
perpendicular to the guide field). This finding should ease the
concern expressed in Bale et al. (2009) that “these local
[kinetic] instabilities ... may confuse the interpretation of solar
wind magnetic power spectra.” From the standpoint of the
Alfvénic cascade, the most important (and potentially obser-
vable) roles played by the firehose are as a direct regulator of
pressure anisotropy and an indirect mediator of adaptive critical
balance and the transition to the KAW range.

The evolution of purely decaying, magnetized turbulence in
an expanding, collisionless plasma with β∥i 1 was recently
investigated by Hellinger et al. (2019) using HEB simulations.
In their setup, an isotropic spectrum of Alfvénically polarized
waves (amplitude δBrms/Bg= 0.24) was initiated inside a cubic
simulation domain with 5122× 256 cells spanning

r´ =^L L 82 i
2

0
3( ) , before transverse expansion was intro-

duced (t = W-10 iexp
4

0
1) and the system evolved. The initial ion

distribution function had nonzero temperature anisotropy,
Δi0=−0.25, with β∥i0= 2.4. Where there is overlap with
their results, we find agreement: efficient regulation of the
temperature anisotropy by kinetic firehose instabilities, persis-
tence of a quasi-perpendicular Alfvénic cascade independent of
firehose fluctuations, and distortion of the particle distribution
function away from a bi-Maxwellian. There are, however, two
important distinctions worth highlighting. First, because of the
shape of the simulation domain (L∥� L⊥) in Hellinger et al.
(2019), the Alfvénic fluctuations are likely not in critical
balance. Alfvénic fluctuations in an MHD turbulent cascade
become critically balanced for isotropic outer-scale fluctuations
at a scale l d~ L B BCB rms g

3 2( ) (Schekochihin 2020); given
the parameters in Hellinger et al. (2019), we estimate
λCB≈ 0.1L∥∼ ρi, placing the entire inertial range in the
weak-turbulence regime. Our demonstration of adaptive critical
balance of strong Alfvénic turbulence when the distribution
function is anisotropic (even unstably so) is one of our key
results. Second, we followed the evolution of the turbulence for
well over an expansion time, and so could confirm that the
temperature anisotropy remains pinned to the kinetic firehose
instability threshold as the expansion proceeds. This is an
important result for solar-wind applications, because the
expansion time there is comparable to the turnover time (and
thus the characteristic decay time) of the outer-scale turbulent
eddies.

Our conclusions may not hold for plasmas with much higher
β∥i than have been considered here. First, it is possible to show
using linear theory that, if t b b W- 10 lni i iexp

3 2 1 2 1( )  , thenΔi

would not be regulated fast enough by the oblique firehose to
remain>−2/β∥i. In this case, vA,eff

2 would pass through 0 and
the entire inertial-range Alfvénic cascade would be destabi-
lized. For the value of texp used in our simulation, we expect
this to occur for β∥i 50. Second, negative pressure anisotropy
driven by the Alfvénic fluctuations themselves can “interrupt”
the fluctuations if d b-B B irms g

1 2
 , by nullifying the

restoring tension force and exciting a sea of scattering firehose
fluctuations (Squire et al. 2017). An investigation of strong
Alfvénic turbulence at such high beta is already underway.
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