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Modern urban integrated energy systems are usually large in scale and consist of

several subsystems located in different areas with various types of users. The

design and operation optimization ofmulti-area integrated energy systems (IES)

faces challenges in integrating user engagement, operational independence of

subsystems, and the combination of long-term objectives and operation

optimization. To solve these problems, the present study proposes a supply-

demand coordinated optimization method for multi-area IES to balance the

long-term overall objectives with the independence of participants such as

users and subsystems. Increasing overall benefits and ensuring fairness can be

achieved by using the proposed methods. In the case study, considering long-

term objectives, the carbon emissions of the system operation are reduced by

9.43% compared to the case without the long-term objectives. Meanwhile, the

results show an approximately 25% reduction in the total cost and a 65%

reduction in carbon emission, compared to the baseline. Moreover, the cost

of different users decreases by 13%–17% from the baseline at the optimal agreed

price. This optimization method provides a holistic framework for the design

and operation, supply-demand coordination, and pricing of transactions for

multi-area IES involving long-term planning and construction with multiple

interests.
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1 Introduction

Integrated energy systems (IES) are new types of integrated systems that adopt

advanced technologies and integrated management methods to achieve effective

integration of different energy sectors, e.g., electricity, gas, and district heating/cooling

(Xiang et al., 2020). The multi-sectoral integration and coordinated planning of IES

enable the improvement in energy efficiency and system flexibility (Keshavarzzadeh and
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Ahmadi, 2019). Meanwhile, IES can effectively utilize unstable

renewable energy sources and reduce carbon emissions

associated (Berjawi et al., 2021). These advantages can help

mitigate resource scarcity and climate change (Lai and

Locatelli, 2021). Therefore, IES has become a research focus in

recent years.

Modern urban IES is usually large in scale and is mostly

divided into several subsystems according to geographical areas

or administrative areas (Wang et al., 2022). Traditionally, these

subsystems located in different areas are designed and operated

independently with none inter-area dispatch. The advantages of

interconnecting multi-area IES can be fully achieved through the

coordinated design and operation of the subsystem, e.g.,

improving efficiency and flexibility. In order to coordinate the

design and operation of multi-area IES, the centralized planning

approach is considered a direct and effective way. With this

approach, a central decision maker collects demand information

from all areas and plans the design and operation of each

subsystem to achieve the best overall benefits (Collins et al.,

2017). However, centralized planning also has limits in terms of

flexibility and applicability. On the demand side, the subsystems

of multi-area IES are normally owned by different operators who

prefer to plan their systems independently to increase their own

profits. On the supply side, there are usually different types of

energy users in urban areas, such as residents, shopping centers,

and factories, whose energy consumption behavior may be

greatly influenced by energy prices. The centralized planning

approach focuses on the demand of users, yet the demand

response and privacy of users are not sufficiently considered

(Chen et al., 2021). In order to solve these problems, much

research has been conducted on distributed optimization of

energy systems and demand response.

Distributed optimization can be used to address the lack of

operational independence of subsystems, and there are a few

distributed algorithms that can be used to transform a multi-area

centralized optimization problem into several subproblems. One

feasible algorithm is Lagrangian Relaxation (LR), which relaxes

the coupling constraints by Lagrangian multipliers and

decomposes the original problem into several subproblems.

Another possible algorithm is Augmented Lagrangian

Relaxation (ALR), which introduces a quadratic penalty term

in the original problem for better convergence (Zheng et al.,

2016). Compared to LR and ALR, Alternating Direction Method

of Multipliers (ADMM) has the advantage of fast convergence

(Boyd et al., 2011), therefore has been successfully applied in the

distributed optimization of energy systems, such as thermal and

hydraulic energy systems (Mork et al., 2022), building cooling

systems (Li et al., 2021b) and the electricity and natural gas

networks (Wen et al., 2018). Since the standard ADMM

algorithm does not converge easily when dealing with

optimization problems containing integer variables, some

advanced ADMM algorithms have been adopted in recent

years. Gan et al. (2021) adopted iterative ADMM to guarantee

the convergence of ADMM when solving problems with binary

variables. In order to improve privacy, Lyu et al. (2021) adopted

dual-consensus ADMM (DC-ADMM) in the energy sharing

framework for smart buildings. In order to improve

communication efficiency, Umer et al. (2021) adopted energy

trading distributed ADMM (ETD-ADMM) in a peer-to-peer

energy trading scheme.

Demand response is considered to be effective in improving

user engagement and overall energy efficiency (Mansouri et al.,

2022). In this approach, users are allowed to adopt response

strategies to adjust their energy consumption behavior and

submit their energy demand information back to the supply

system. Several studies have analyzed the demand response

strategies for users. For example, Huang et al. (2022)

proposed a hierarchical structure for bilateral energy trading

between users and the energy exchange agents. The model

enabled users who install PV and energy storage devices to

act as prosumers, which can better utilize local resources and

reduce the overall energy cost. Khorasany et al. (2021) discussed

the behavior and response strategies of users who installed PV

and battery energy storage by combining a two-stage model of

the day-ahead and real-time markets. In addition to users

adjusting demand by themselves, demand response can be

achieved by peer-to-peer energy trading communities

composed of users, and Zhou et al. (2020) discussed the

optimal bidding strategy for this energy trading community

where Pareto improvements in revenue of each user can be

achieved. For the demand side management strategies of

aggregation of local prosumers of renewable electric and

thermal energy, Dal Cin et al. (2022) introduced a model to

adapt electricity demand to locally available renewable energy

sources, applied upstream for design optimization of energy

communities. Niu et al. (2020) analyzed the impact of price-

driven demand response strategies on users and power grids and

proposed a method to promote smooth interaction between

power grids and distributed energy systems based on the ε

-constraint method. However, different areas usually contain

various types of users who have various energy consumption and

demand response strategies. The user types and associated energy

consumption behaviors have a significant impact on the energy

demand. Furthermore, the design of IES also requires forecasting

and integration of local energy demand.

In most supply-demand coordination relationships, users

normally adjust energy demand according to their own

demand response strategy, while suppliers adjust energy

supply based on the cost and user demand. These

relationships with multiple decision-makers can be modeled

as bilevel problems (Bard, 2013). The energy demand is

determined by users in the upper layer, and suppliers in the

lower layer determine their own dispatch strategies. Such bilevel

problems can be transformed into single-level problems with

equilibrium constraints by introducing the Karush-Kuhn-Tucker

(KKT) conditions. Li et al. (2021a) adopted this transformation
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approach to construct an energy management system in which

multiple distributed energy systems were managed by one energy

service company. Compared to the bilevel model, the three-level

model introduces an intermediate layer, i.e., the layer of load

aggregator (LA). In this model, energy demand is aggregated by

LAs and suppliers trade energy with LAs. The suppliers do not

require access to the energy demand of each user, and the privacy

of the user is thus ensured. As for profit allocation, Nash

equilibrium is a common method that can be used to evaluate

the fairness of profit allocation between different participants

(Nash, 1950). Several previous studies have discussed supply-

demand coordination for energy distribution in the short-term

operation stage. Xi et al. (2021) analyzed a framework for

coordinated optimization of IES involving electric power

systems, natural gas systems, and district heating systems

under the short-term market and demonstrated that the

optimization approach could improve renewable energy

utilization and increase total social welfare. Gao et al. (2022)

presented a simulation framework including the design and

operation of IES in wholesale energy markets. Stennikov et al.

(2022) developed an optimization model of IES with a multi-

agent approach and analyzed the interaction between centralized

and distributed energy generation. Zheng et al. (2022) proposed a

distributed multi-energy demand response methodology for the

optimal coordinated operation of smart building clusters based

on a hierarchical building-aggregator interaction framework.

This methodology employed the capsule network to predict

the multi-energy load of the building and utilized load

flexibility and multi-energy complementarity to achieve

optimal multi-energy coordination. Short-term operation

optimization can immediately lead to smarter operation,

however, it can also prevent the system from realizing long-

term benefits, particularly the environmental impact of energy

supply. For IES with multiple energy conversion technologies,

the most economical operating solutions tend to have the highest

carbon emissions.

According to the literature review, there are several

challenges in integrating user engagement, operational

independence of subsystems, and combination of long-term

objectives and operation optimization of multi-area IES. The

centralized planning approach focuses on the overall long-term

objectives with insufficient independence of participants, while

the distributed operation optimization focuses on short-term

transactions of participants and tends to ignore the long-term

objectives.

Considering the aforementioned problems, the present study

proposes a supply-demand coordinated optimization method of

IES to balance the long-term overall objectives with the

independence of participants such as users and subsystems, as

shown in Figure 1. In this method, participants are modeled as

rational agents with independent optimization objectives. The

initial energy demand of users is forecasted by using demand

forecasting tools and updated based on the initial energy prices

and demand response strategies. The energy demand of different

users is submitted to LAs, and LAs submit the energy demand of

different areas to the suppliers, i.e., the subsystems of multi-area

IES. Based on the multi-objective planning and distributed

optimization, the overall optimal energy distribution and

carbon emission of the multi-area IES can be derived. The

benefits of subsystems and LAs at the current price are

evaluated by the profit allocation method based on Nash

equilibrium. If the optimal price is not reached, the new price

will be sent to the subsystems, LAs, and users and perform a new

calculation.

The major contributions of this work are summarized as

follows.

FIGURE 1
Schematic diagram of the holistic method.
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1)Develop a design and operation optimization method for

multi-area IES based on a multi-agent model. The demand

response strategy of users and the supply strategy of IES

subsystems can be analyzed effectively when considering the

overall optimization.

2)Long-term annualized objectives like annual carbon

emissions are incorporated into the distributed

optimization. The operation of the subsystem is effectively

optimized in consideration of long-term benefits.

3)A supply-demand matching approach to energy pricing and

profit allocation is established. Energy trading between users

and subsystems. The fairness of energy transactions between

users and subsystems can be ensured by using this pricing and

profit allocation method.

The rest of this paper is organized as follows. Section 2

describes the methods, including the demand response model

and distributed optimized model for multi-area IES. Section 3

analyses a simple case to illustrate the process and effectiveness of

the model. Section 4 introduces a case study analysis. Section 5

provides results and discussion. Section 6 concludes the whole

study.

2 Materials and methods

The detailed process of the proposed method is shown in

Figure 2. Firstly, the energy demand of different residential,

industrial and commercial users in the planning area are

FIGURE 2
The process diagram of the proposed method.
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forecasted and used as input parameters for the demand response

model and the multi-objective optimization model for IES.

Subsequently, the planning of each subsystem of the multi-

area IES is optimized separately, with cost and carbon

emission as optimization objectives. The demand response

model, distributed optimization model for IES, and profit

allocation method are cyclic optimization processes. The

initial energy price is input into the demand response model,

and the calculated energy demand at the price is input into the

distributed optimization model for IES. The energy supply at the

price is fed back to the demand response model. At the same

time, the benefits of subsystems and users are input into the profit

allocation method to evaluate the fairness of the profit allocation

at the current price. If the optimal price is not reached, the new

price is generated by systematic sampling within the feasible

range and input into the demand response model and distributed

optimization model for IES again.

2.1 Demand forecast method

Tools for forecasting demand in urban areas include

SUNtool, CitySIM, CityBES, City Energy Analyst (CEA), etc.

(Johari et al., 2020) The forecasting accuracy of CEA has been

evaluated and compared with empirical data and the output of

CLM–EnergyPlus, and the result showed high reliability

(Fonseca and Schlueter, 2015). In this study, CEA (ETH

Zurich, 2022) is used to forecast the hourly energy demand of

each user in a typical year for urban areas. This tool is based on

spatial analysis and dynamic building energy modeling, and the

input parameters include weather data and building design

information.

Considering the scale of the model, introducing year-round

hourly data (including renewable resources and energy demand,

8760 h) into the optimization can create a large number of

variables and constraints, which can lead to high-dimensional

problems and unacceptable computational costs. In addition,

since the supply side is a system model with large granularity, the

feature extraction of energy demand, and identifying an

appropriate number of typical demands can solve the supply

and demand side matching problem. To ensure the model

calculation speed, typical daily data and occurrence

probability instead of year-round hourly data are introduced

into the proposed optimization model. In order to generate

enough typical scenarios to represent the fluctuation of the

energy demand curve, the K-Medoids clustering method

(Arora et al., 2016) is introduced. The process of the

K-Medoids clustering method shows as follows.

First, k daily energy demands are selected as the cluster center

points in all samples. Second, calculate the Euclidean distance

between the remaining points and the center points, and assign

the remaining points to the clusters represented by the current

closest center point according to the principle of being closest to

the center point. Then, for the other points in each cluster except

the center point, when calculating the point as the new center

point, the sum of the distances from all other points to the center

point is calculated, and the point corresponding to the minimum

total distance is selected as the new center point. Finally, the

second and third steps are repeated until all the center points no

longer change or the maximum number of iterations is reached,

and the center point at this time is used as the clustering result.

2.2 User demand response model

The user in this study is modeled as a rational agent that can

regulate its own energy demand. The regulating behavior of users

includes shifting electricity demand from peak tariff periods to

off-peak tariff periods and curtailing heating or cooling demand

appropriately during peak times. The electricity, heating, and

cooling response strategy of users is shown in Eqs 1a–e. The users

try to maximize their own benefits, and the energy demand is

determined by the difference between energy consumption

satisfaction (Vi(Et,i,s,h)) and energy consumption cost

(Ci(Et,i,s,h)) (Wang et al., 2021), as shown in Eq. 1a. Energy

consumption satisfaction is a function of the user’s energy

consumption (Et,i,s,h), and the form of this function is usually

quadratic or logarithmic (Khorasany et al., 2021). In this study,

the quadratic form is used, as shown in Eq. 1b. Energy

consumption cost depends on energy consumption and

energy prices, as shown in Eq. 1c. Eq. 1d represents the range

of values of user demand, which are determined by the user’s

energy-using equipment and energy-using habits. The non-

reducible but transferable electricity demand is bounded by

Eq. 1e, and the ratio of non-reducible demand to total

demand tends to be one for residential users, or between

0.95 and 0.97 for commercial and industrial users. After the

response process, users submit their energy demand to the LA.

On behalf of users, LA directly participates in the coordinated

optimization with the suppliers. Users purchase energy at the

hourly agreed energy price between LA and subsystems.

Et,i,s,h � argmax [Vi(Et,i,s,h) − Ci(Et,i,s,h)],∀i ∈ I, ∀s ∈ S, ∀h ∈ H, ∀t ∈ {el, he, co}
(1a)

Vi(Et,i,s,h) �∑t,s,h
( − 1

2
αt,i,s,hE

2
t,i,s,h

+ βt,i,s,hEt,i,s,h),∀i ∈ I, t ∈ {el, he, co} (1b)
Ci(Et,i,s,h) �∑t,s,h

pt,i,s,hEt,i,s,h,∀i ∈ I, t ∈ {el, he, co} (1c)
Et,i,s,h ≤Et,i,s,h ≤ �Et,i,s,h,∀i ∈ I,∀s ∈ S,∀h ∈ H,∀t ∈ {el, he, co}

(1d)
∑

h
Eel,i,s,h ≥ γi,nc∑h

Etotal−demand
el,i,s,h ,∀i ∈ I,∀s ∈ S (1e)

where I represents users, S and H represent typical days and

hours in the daytime, respectively. t includes electricity, heating,

and cooling. αt,i,s,h and βt,i,s,h denote the time-dependent
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parameters that are determined by user energy consumption,

pt,i,s,h represents the energy price, Et,i,s,h represents the minimum

acceptable user demand, �Et,i,s,h represents the maximum

acceptable demand, γi,nc denotes the ratio of non-reducible

electricity demand to the overall electricity demand, and

Etotal−demand
el,i,s,h denotes the overall electricity demand.

2.3 Distributed optimization method for
multi-area integrated energy systems

In this model, the subsystems of multi-area IES which are

connected with the grid, heating, and cooling network are

used as suppliers. Each subsystem is modeled as a rational

agent, and mainly includes energy facilities such as CHP units,

boilers, heat pumps, electric chillers, absorption chillers,

battery energy storage, thermal storage tank, and renewable

energy facilities such as PV and wind turbines. The MILP

(Mixed Integer Linear Programming) method is adopted to

optimize technology selection, installed capacity, and system

scheduling with the balance of carbon emission and cost

(Zhang et al., 2019). During the operation stage, each

subsystem regulates its own operation strategies and shares

information about the exchanged energy flows and carbon

emissions.

2.3.1 Multi-objective optimization for integrated
energy systems

In order to determine the optimal capacity for each

subsystem of the multi-area IES, the annual total cost (ATC)

and annual carbon emission (ACE) are chosen as optimization

objectives. The available technology options of IES are shown in

Figure 3. ATC includes the capital expenditure (CAPEX), the

fuel cost (FC), and the maintenance cost (MC), as shown in Eq.

2. ACE comes from external electricity and natural gas

consumed by the system, as shown in Eq. 3. In addition,

CAPEX includes the capital costs of pipelines and other

energy technologies, as calculated in Eq. 4. Eq. 5 shows the

calculation of the capital recovery factor (CRF). FC and MC are

related to the output of different technologies as determined by

Eqs 6, 7, respectively.

Objcostn � CAPEXn × CRF +∑
s,h
probs × (FCn,s,h

+MCn,s,h),∀n ∈ N (2)

FIGURE 3
Available technology options of subsystems.
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Objemi
n �∑

s,h
probs × [emielec−ims,h × Eelec−im

n,s,h + emiNG
s,h × (ECHP

n,s,h

ηCHP

+ Qb−heat
n,s,h

ηb
)],∀n ∈ N

(3)
CAPEXn �∑pipe

LPn,pipe × CCAP
pipe

+∑
tech

CAPn,tech × CCAP
tech ,∀n ∈ N (4)

CRF � r × (1 + r)y
(1 + r)y − 1

, (5)

FCn,s,h � (ECHP
n,s,h

ηCHP

+ Qb−heat
n,s,h

ηb
) × CNG

+ Eelec−im
n,s,h × Celec−im

h ,∀n ∈ N,∀s ∈ S,∀h ∈ H (6)
MCn,s,h � ECHP

n,s,h × CM
CHP + Qb−heat

n,s,h × CM
b + QHP

n,s,h × CM
HP

+ Qec−cool
n,s,h × CM

ec + Qac−cool
n,s,h × CM

ac + EWT
n,s,h × CM

WT

+ EPV
n,s,h × CM

PV + Eest−char
n,s,h × CM

est

+ Qhst−char
n,s,h × CM

hst,∀n ∈ N,∀s ∈ S,∀h ∈ H (7)

where N represents suppliers, i.e., the subsystems, probs is the

probability of each typical day, the subscripts of pipe and tech

represent the different types of pipelines and IES technologies,

respectively. CAPn,tech represents the installed capacity, LPn,pipe

is the length of the pipeline, CCAP
pipe and CCAP

tech represent the unit

cost of pipeline and IES technologies, respectively. r is the interest

rate and is considered as 6% (Jing et al., 2017), y represents the

project life in years, CNG represents the unit cost of nature gas,

Celec−im
h represents the unit cost of electricity from grid, and CM

represents the unit maintenance cost of different technology.

For equipment such as battery energy storage, operation-

dependent degradation cost and lifespan reduction would impact

the availability and economics of IES. In this model, regular

replenishment of the battery modules according to the degree of

degradation is considered to ensure stable performance of the

battery energy storage. The degradation cost of battery energy

storage is discounted in the maintenance cost associated with the

operation. In addition to battery energy storage, other equipment

without significant degradation is planned with redundant

capacity so that the remaining capacity after degradation

could meet the operation requirements.

The lifespan of the battery energy storage is calculated

according to Life � CF100∑a,d
1
2D

kp
a,d

(Kazemi and Zareipour, 2018),

where CF100 represents the maximum number of full charge-

discharge, Da,d represents the depth of the a th charge/discharge

on day d, and kp is a constant in the range of 0.8–2.1. Lowering

the depth of charge/discharge and reducing the daily times of

charge/discharge can effectively improve the battery lifespan.

When the lifespan is lower than the program lifetime, the battery

energy storage needs to be replaced. Lifespan reduction of other

equipment is not significant. With regular maintenance and

avoiding drastic power changes, CHP units usually would not

require replacement over a project life of about 20 years.

There is a trade-off between the ATC and ACE of multi-

objective optimization, and there is no guarantee that both are

optimal at the same time. The trade-off between conflicting

objectives can be clearly seen by generating the Pareto

Frontier. In this study, the ε-constraint (Zhang et al., 2015) is

used to solve the bi-objective optimization. The constraint

approach keeps one of the objectives, such as ATC, as the

objective function and transforms the other objective, such as

ACE, into the constraint. The constraint ACE ≤ ε is added to the

model by introducing a parameter ε. Thus, the bi-objective

optimization is transformed into a single-objective

optimization. By minimizing ATC and ACE respectively, the

values of maximum ACEmax and minimumACEmin of ACE can

be obtained. Then, for each N+1 point, the value of ε is calculated

by ACEmax − ACEmax−ACEmin

N δ, where N is the user-defined

number of intervals between ACEmax and ACEmin, δ = 1, 2,

..., N. The specific description of the ε-constraint constraint for
solving the multi-objective problem can be found in (Zhang et al.,

2015), which is not discussed in detail in this paper.

In order to determine the optimal solution from multiple

solutions on the Pareto frontiers, Euclidean distance-based

decision-making methods can be adopted. These methods

determine the optimal solution by calculating the Euclidean

distance from each solution to the ideal point and the nadir

point after normalizing the value of the objective function. Linear

Programming Techniques for Multidimensional Analysis of

Preference (LINMAP) selects the solution with the minimum

distance from the ideal point as the optimal solution, while

Technique for Order Preference by Similarity to an Ideal

Solution (TOPSIS) selects the solution with the largest ratio of

the distance from the ideal point to distance from the nadir point

as the optimal solution. In addition to the Euclidean distance-

based methods, Shannon’s entropy-based methods and fuzzy

theory-based methods are also commonly used, which can be

referred to (Jing et al., 2018) for details.

2.3.2 Supply balance for subsystems of
integrated energy systems

The electricity, heating, and cooling supply of the subsystem

mainly depends on the output of each technology. The electricity

supply (Eel,sup
n,s,h ) is calculated by Eq. 8 which includes electricity

production from CHP unit (ECHP
n,s,h ), grid (Eim

n,s,h), PV(E
PV
n,s,h) and

wind turbine (EWT
n,s,h), electricity consumption from heat pump

(EHP
n,s,h) and electric chiller (Eec

n,s,h), the charged (Eest−char
n,s,h ) and

discharged (Eest−disc
n,s,h ) electricity of battery energy storage, as well

as input electricity (Eel,in
m,n,s,h) and output electricity (Eel,out

n,m,s,h). The

heating supply (Qhe,sup
n,s,h ) is calculated by Eq. 9, where the heating

supply is equal to the sum of the CHP unit heating output

(QCHP−heat
n,s,h ), boiler heating output (Qb−heat

n,s,h ), storage heating

discharged (Qhst−disc
n,s,h ) and the heating input (Qhe,in

m,n,s,h) from

other subsystems, minus the storage heating charged

(Qhst−char
n,s,h ), the absorption chiller heating input (Qac−heat

n,s,h ) and

the heating output (Qhe,out
n,m,s,h) to other subsystems. Similarly, Eq. 10
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describes the cooling supply (Qco,sup
n,s,h ), covering electric chiller

cooling output (Qec−cool
n,s,h ) and absorption chiller cooling output

(Qac−cool
n,s,h ), cooling input (Qco,in

m,n,s,h) and cooling output (Qco,out
n,m,s,h).

Considering the energy transfer of adjacent subsystems, ]elm,n, ]hem,n

and ]com,n represent electricity, heating, and cooling loss factors

when transferring energy from subsystem m to adjacent

subsystem n, respectively.

Eel,sup
n,s,h � ECHP

n,s,h + Eim
n,s,h + EPV

n,s,h + EWT
n,s,h + Eest−disc

n,s,h − Eest−char
n,s,h − EHP

n,s,h

− Eec
n,s,h + ∑

m≠n
]elm,nE

el,in
m,n,s,h

− ∑
m≠n

]eln,mE
el,out
n,m,s,h,∀m ∈ N,∀n ∈ N,∀s ∈ S,∀h ∈ H

(8)
Qhe,sup

n,s,h � QCHP−heat
n,s,h + Qb−heat

n,s,h + QHP−heat
n,s,h

+ Qhst−disc
n,s,h −Qhst−char

n,s,h −Qac−heat
n,s,h + ∑

m≠n
]hem,nQ

he,in
m,n,s,h

− ∑
m≠n

]hen,mQ
he,out
n,m,s,h,∀m ∈ N,∀n ∈ N,∀s ∈ S,∀h ∈ H

(9)
Qco,sup

n,s,h � Qec−cool
n,s,h + Qac−cool

n,s,h + ∑
m≠n

]com,nQ
co,in
m,n,s,h

− ∑
m≠n

]con,mQ
co,out
n,m,s,h,∀m ∈ N,∀n ∈ N,∀s ∈ S,∀h ∈ H

(10)
The detailed technology constraints can be found in

Section 2.3.3.

2.3.3 Technology constraints
This section provides detailed technology constraints of the

optimization model for IES.

The energy output of the device cannot exceed its installed

capacity, which can be defined as

ECHP
n,s,h ≤CAPCHP

n × TIh,∀n, s, h (11a)
Qb−heat

n,s,h ≤CAPb
n × TIh,∀n, s, h (11b)

QHP−heat
n,s,h ≤CAPHP

n × TIh,∀n, s, h (11c)
Qec−cool

n,s,h ≤CAPec
n × TIh,∀n, s, h (11d)

Qac−cool
n,s,h ≤CAPac

n × TIh,∀n, s, h (11e)

where TIh denotes each operating step of the time interval.

The energy conversion constraints can be defined as

Qb−heat
n,s,h � ηb × NGb

n,s,h,∀n, s, h (12a)
QHP

n,s,h � ηHP × EHP
n,s,h,∀n, s, h (12b)

Qec−cool
n,s,h � ηec × Eec

n,s,h,∀n, s, h (12c)
Qac−cool

n,s,h � ηac × Qac−cool
n,s,h ,∀n, s, h (12d)

where η represents the device efficiency, andNGb represents the

natural gas consumption of the boiler.

In the present study, back-pressure micro gas turbines are

chosen as the main equipment for CHP units. This kind of CHP

unit has a constant heat to power ratio (σn) and a minimum

power output limit, which can be defined as

QCHP
n,s,h #σnE

CHP
n,s,h ,∀n, s, h (13a)

ECHP
n,s,h #(1 − χCHP

n,s,h ) × M1, CHP,∀n, s, h (13b)
ECHP
n,s,h P0.3 × CAPCHP − χCHP

n,s,h × M2, CHP,∀n, s, h (13c)

where binary variable χCHP
n,s,h controls the on/off status of the CHP

unit, and M1,CHP and M2,CHP are sufficiently large variables.

The output of renewable energy technologies is calculated

based on meteorological resource conditions. For example, the

power output of the PV system is calculated by Eqs 14a,b (Lin

et al., 2021).

EPV,elec
s, h � Nm,PV × EAm,PV × SIs,h × ηPVs,h × TIh,∀s, h (14a)

ηPVs,h � θPV0 × ⎡⎢⎢⎢⎣(SIPVs,h
SI0
)θPV1

+ θPV2 × (SIPVs,h
SI0
)⎤⎥⎥⎥⎦

× ⎡⎢⎢⎢⎣1 + θPV3 × (TPV
s,h

T0
)θPV1

+θPV4 × (AMs,h

AM0
)θPV1 ⎤⎥⎥⎦,∀s, h

(14b)

The PV energy output is determined by the incident solar

radiation (SIs,h), the effective area per module (EAm,PV)

corrected according to the tilt angle, and the number of

modules (Nm,PV). The empirical parameters θPV0 , θPV1 , θPV2 ,

θPV3 , and θPV4 are determined by the device’s performance. SI0,

T0, and AM0 are the standard values for incident solar radiation,

panel temperature, and airmass. These values are listed in

Supplementary Table S1 of the supplementary material.

The power output of wind turbines can be calculated as

follows,

EWT
s,h �

⎧⎪⎨⎪⎩
0, vs,h < vin, vs,h > vout

Nm,WT × APm,WT
s,h × TIh, v

in ≤ vs,h < vrated,
CAPWT × TIh, v

rated ≤ vs,h ≤ vout
∀s, h

(15a)
APm,WT

s,h � θWT
3 v3s,h + θWT

2 v
2

s,h + θWT
1 vs,h + θWT

0 ,∀s, h (15b)

The output of wind turbines depends mainly on the average

wind speed (vs,h), as shown in Eq. 15a. The turbine generates

electricity only when the real-time wind speed stays within the

range of cut-in and cut-out wind speeds, i.e., vs,h ϵ[vin, vout]. vrated
denotes the rated wind speed. CAPWT denotes the total installed

capacity, i.e., the sum of the rated power. APm,WT denotes the

average power per module. TIh denotes each operating step of

the time interval. When the wind speed is between vin and vrated,

APm,WT can be calculated according to Eq. 15b, where θWT
0 , θWT

1 ,

θWT
2 , and θWT

3 are the fitting parameters as shown in

Supplementary Table S1 of the supplementary material.

In terms of energy storage, the amount of energy stored in

storage facilities (Est−in
t,n,s,h) should be smaller than the installed

Frontiers in Energy Research frontiersin.org08

Bai et al. 10.3389/fenrg.2022.975214

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2022.975214


capacity (CAPst), as shown in Eqs 16a,b. t represents the type of

energy storage, including electrical storage and thermal storage.

ηst−chart , ηst−disct and ηst−int represent charge, discharge, and storage

efficiency, respectively. Meanwhile, Eqs 17a–c is introduced to avoid

the simultaneous charging and discharging of the energy storage

facilities, where χst−disct,n,s,h and χst−chart,n,s,h represent binary variables, and

M1,st and M2,st represent sufficiently large variables.

Est−in
t, n,s,h � ηst−int × Est−in

t, n,s,h−1 + ηst−chart × Est−char
t,n,s,h

− Est−disc
t,n,s,h

ηst−disct

,∀n, s, h,∀t ∈ {el, he} (16a)

Est−in
t, n,s,h ≤CAPst

t × TIh,∀n, s, h,∀t ∈ {el, he} (16b)
χst−disct,n,s,h + χst−chart,n,s,h ≤ 1,∀n, s, h,∀t ∈ {el, he} (17a)

Est−disc
t,n,s,h ≤ χst−disct,n,s,h × M1,st,∀n, s, h,∀t ∈ {el, he} (17b)

Est−char
t,n,s,h ≤ χst−chart,n,s,h × M2,st,∀n, s, h,∀t ∈ {el, he} (17c)

2.3.4 Distributed optimization method
The distributed optimization for suppliers in this work is

based on the ADMM algorithm, and the process of the proposed

method is shown in Figure 4. In this section, cost (ATC) is used

as the optimization objective, and carbon emission (ACE) is used

as a variable that affects the cost. The cost of supplier (ATCn) is a

function of the energy supply (En,t,s,h) and carbon emission

(ACEn) when the CAPEX is fixed, as shown in Eq. 18. The

model can achieve distributed optimization by decomposing the

total cost of energy supply into the cost of each supplier, as shown

in Eqs 19, 20. Compared to the total objective in Eq. 19,

additional Lagrangian residual terms of energy supply and

carbon emission are added to the objective of each supplier in

the k th iteration (Eq. 20). The carbon emission of each supplier is

calculated according to Eq. 21. In order to control the total

carbon emission, ensure fairness in the distribution of carbon

emission reduction responsibility and avoid monopolization of

energy supply by one supplier, the maximum carbon emission of

each supplier is determined based on the energy supply and

carbon reduction cost of each supplier when operating

individually as shown in Eq. 22.

ATCn(En,t,s,h, ACEn) � CAPEXn × CRF

+∑
s,h
probs × (FCn,s,h(En,t,s,h, ACEn)

+MCn,s,h(En,t,s,h, ACEn)),
∀n ∈ N,En,t,s,h ∈ {Eel,sup

n,s,h , Qhe,sup
n,s,h , Qco,sup

n,s,h } (18)
objcen �∑

n
ATCn(En,t,s,h, ACEn),∀s ∈ S,∀h ∈ H,En,t,s,h

∈ {Eel,sup
n,s,h , Qhe,sup

n,s,h , Qco,sup
n,s,h } (19)

objdis,kn � ATCn(En,t,s,h , ACEn) +∑t, s,h

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
λkt,s,h × ⎛⎝Etot

t,s,h − ∑
m≠n

Ek−1
m,t,s,h − En,t,s,h

⎞⎠
+ρ

k
t

2
× ‖ Etot

t,s,h − ∑
m ≠ n

Ek−1
m,t,s,h − En,t,s,h ‖2

2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

λkemi × ⎛⎝ACEtot − ∑
m≠n

ACEk−1
m − ACEn

⎞⎠
+ρ

k
emi

2
× ‖ ACEtot − ∑

m ≠ n

ACEk−1
m − ACEn ‖2

2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠,∀k ∈ K,∀n ∈ N,m ∈ N,En,t,s,h

∈ {Eel,sup
n,s,h , Qhe,sup

n,s,h , Qco,sup
n,s,h } (20)

FIGURE 4
Distributed optimization flow chart.
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ACEn �∑s,h
probs × (emielec−ims,h × Eelec−im

n,s,h + emiNG
s,h × (ECHP

n,s,h

ηCHP

+ Qb−heat
n,s,h

ηb
)),∀n ∈ N

(21)
ACEn ≤ κ × γn, carb × ACEtot,∀n ∈ N (22)

where n represents the nth supplier, En,t,s,h contains the supply of

electricity (Eel,sup
n,s,h ), heating (Qhe,sup

n,s,h ) and cooling (Qco,sup
n,s,h ), ACEn

represents the carbon emission, Etot
t,s,h represents the total energy

demand, ACEtot represents the total maximum amount of

carbon emission, Ek−1
m,t,s,h and ACEk−1

m represent the energy

supply and carbon emission of the other suppliers without

nth supplier in the k − 1th iteration, respectively. λkt,s,h and

λkemi represent the Lagrangian operator, ρkt and ρkemi represent

the penalty factor, γn, carb denotes the proportion of carbon

emission allocated to each subsystem, and κ represents the

upper limit of the uplift factor, which is chosen according to

the case.

The primal residuals and dual residuals of the kth iteration

are calculated according to Eqs 23a,b, 24a,b respectively (Boyd

et al., 2011).

rkt,s,h � Etot
t,s,h −∑n

Ek
n,t,s,h,∀s ∈ S,∀h ∈ H,∀t ∈ {el, he, co} (23a)
rkemi � Etot

emi −∑n
Ek
n,emi, (23b)

skn,t,s,h � Ek
n,t,s,h − Ek−1

n,t, s,h,∀n ∈ N,∀s ∈ S,∀h ∈ H,∀t ∈ {el, he, co}
(24a)

skn,emi � Ek
n,emi − Ek−1

n,emi,∀n ∈ N (24b)

In each iteration, the Lagrangian operator (λk) is updated

according to Eqs 25a,b. In order to improve the convergence

and make the performance less dependent on the initial choice

of the penalty parameter, the varying penalty parameter

proposed by Boyd et al. (2011) is adopted, and the penalty

factor (ρk) is updated as shown in Eqs 26a–f in each

iteration. In general, μ is taken as 10 and τincr and τdecr are

taken as 2.

λkt, s,h � λk−1t,s,h + ρkt r
k
t,s,h,∀s ∈ S,∀h ∈ H,∀t ∈ {el, he, co} (25a)
λkemi � λk−1emi + ρkemir

k
emi, (25b)

ρk+1t �
⎧⎪⎨⎪⎩

τ incrρkt , r
tot,k
t > μstot,kt

ρkt/τdecr, stot,kt > μrtot,kt

ρkt , other

,∀t ∈ {el, he, co} (26a)

ρk+1emi �
⎧⎪⎨⎪⎩

τincrρkemi, r
tot,k
emi > μstot,kemi

ρkemi/τdecr, stot,kemi > μrtot,kemi

ρkemi, other

(26b)

rtot,kt �∑
s,h

∣∣∣∣rkt,s,h∣∣∣∣,∀t ∈ {el, he, co} (26c)

rtot,kemi � ∣∣∣∣rkemi

∣∣∣∣, (26d)

stot,kt � ∑n,s,h

∣∣∣∣skn,t,s,h∣∣∣∣
Num

,∀t ∈ {el, he, co} (26e)

stot,kemi � ∑n

∣∣∣∣skn,emi

∣∣∣∣
Num

, (26f )

The model is judged to have converged when both the primal

residuals and the dual residuals are less than the stopping

tolerance, as shown in Eqs 27a,b, 28a,b.∣∣∣∣rkt,s,h∣∣∣∣≤ εr,∀s ∈ S,∀h ∈ H,∀t ∈ {el, he, co} (27a)∣∣∣∣rkemi

∣∣∣∣≤ εr, (27b)∣∣∣∣skn,t,s,h∣∣∣∣≤ εs,∀s ∈ S,∀h ∈ H,∀t ∈ {el, he, co} (28a)
|skemi

∣∣∣∣≤ εs, (28b)

Some designs of the model are described below.

In terms of fairness, the maximum carbon emissions of each

subsystem are set based on a weighted average of each

subsystem’s annual energy supply and carbon reduction costs

as a percentage of the total. The data on annual energy supply and

carbon reduction costs comes from the design of multi-objective

optimization. On the one hand, subsystems with more annual

energy supply have a greater supply capacity and tend to supply

more energy in distributed optimization. On the other hand,

subsystems with more carbon reduction costs, are often equipped

with more costly low-carbon technology equipment, such as

wind turbines. The maximum carbon emission can be

appropriately increased so that they can supply more energy

to obtain more profits when supplying renewable energy. For IES

with CHP as the core equipment, the higher carbon emissions

usually mean more energy supply and more profits. The fairness

guarantee is based on the principle that environment-friendly

subsystems with greater supply capacity can have higher rewards.

Since binary variables can affect the convergence of ADMM,

in this study, an iterative ADMMmethod has been proposed, and

the binary variables such as the on/off status of the devices of the

subsystems are updated iteratively. Before each distributed

optimization, each subsystem first performs a pre-

optimization individually based on the energy demand of each

area to determine the on/off status of the devices and set them as

the initial values. In this way, the binary variables are fixed with

determined values, and the convexity of the objective function

and the convergence of the ADMM are guaranteed. After

convergence is reached in one iteration, the binary variables

are adjusted and the next iteration of optimization is performed

for the operation of the multi-area IES.

In addition to pre-optimization to determine the initial

values as well as the varying penalty parameter, appropriate

parameter selection can also accelerate the convergence, which

is discussed in Section 5.5.

2.4 Profit allocation model

The profit allocation method proposed in this study

considers the fairness of profit allocation while maximizing
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the overall benefit. The profits of different suppliers, LAs, and

users, are defined by Eqs 29a–c, respectively. The price is

determined by the agreement between LAs and suppliers. The

objective function in Eq. 30a represents the centralized planning

that maximizes the sum of profits of all users and suppliers,

which may lead to an unfair profit allocation. To solve this

problem, a Nash-type objective function based on the

cooperative game theory proposed by Jing et al. (2021) is

adopted, as shown in Eq. 30b. This function leads to a

bargaining solution, which fulfills axioms including Individual

Rationality, Feasibility, Pareto Optimality, Independence of

Irrelevant Alternatives, Independence of Linear

Transformations, and Symmetry. The last three axioms ensure

the fairness of the bargaining solution (Wang and Huang, 2018).

The outputs of the model include 1) the agreed prices for

electricity, heating, and cooling, 2) the transaction volumes for

different time periods, and 3) the total profits and profit

allocation for each participant.

πn,supplier �∑t,s,h
pricen,t,s,h × En,t,s,h − Costsuppliern ,∀n ∈ N (29a)

πLA �∑
t,s,h
(priceut,s,h − priceagreedt,s,h ) × Eagg

t,s,h, (29b)
πi,user �∑t,s,h

(priceut,s,h − priceagreedt,s,h ) × Ei,t,s,h,∀i ∈ I (29c)
objcen �∑

n
πn,supplier + πLA (30a)

objNash−type �∏
n
(πn,supplier − πL

n,supplier)(πLA − πL
LA) (30b)

where priceut,s,h denotes the price of electricity purchased by users

from the grid, the price of heating energy from gas boilers, and

the price of cooling energy from electric chillers. priceagreedt,s,h

denotes the agreed price between the suppliers and load

aggregators, En,t,s,h, Ei,t,s,h and Eagg
t,s,h denote the energy supply

of the nth supplier, the energy demand of the ith user, and the

aggregated demand of the load aggregator (agg), respectively.

Superscript L denotes the lower bound, πL
n,supplier and π

L
LA denote

the profit when the suppliers and load aggregator do not

participate in the coordination, respectively.

Energy prices are obtained through systematic sampling in

the price range where πn,supplier, πLA and πi,user are all positive. In

order to evaluate the fairness of different pricing, with reference

to Eq. 30b, the fairness factor ωfair is defined as

ωfair �∏n
(πn,supplier − πL

n,supplier)(πLA − πL
LA) (31)

3 Case study 1

To illustrate the process and effectiveness of the model, a

simple case consisting of an industrial user and two identical

subsystems of IES is analyzed in this section. First, the annual

demand of the user is obtained by the demand forecasting

method, and the energy demand of different seasons is

obtained by the clustering method, where the electricity

demand of a typical day is shown in Figure 5A. In the figure,

the Without DR scenario indicates the demand curve when the

user does not participate in the demand response, the moderate

response strategy when the price of the Mild DR scenario is lower

than the grid price, and the aggressive response strategy when the

price of Radical DR is equal to the grid price. Two identical

subsystems of IES (SIES) are planned based on typical daily

demand. In terms of operation optimization, the energy output

by the device for the typical demand shown in Figure 5A is shown

in Figure 5B and Figure 5C. Figure 5B shows the scenario with no

carbon emission control and Figure 5C shows the scenario with

maximum carbon emission. Since electricity from the grid has a

higher carbon emission, more electricity is generated by CHP in

the scenario of Figure 5C than in the scenario of Figure 5B, and

the daily carbon emission is reduced by 15.80%. This

demonstrates the effectiveness of using maximum carbon

emission in operation optimization.

To analyze the effectiveness of the demand response and

profit allocation methods, the Radical DR scenario with no profit

allocation and high electricity prices, the Mild DR scenario with

profit allocation and moderate electricity prices, and the Without

DR scenario are compared. Setting the electricity cost of IES is

0.4 RMB/kWh during the valley hours. Of the day and 0.6 RMB/

kWh for peak and normal hours, only 80% of the demand will be

purchased from the IES when IES has no price advantage. For

Mild DR, the scenarios when the agreed price decreases by

0.05–0.20 RMB/kWh compared to the grid price during the

peak and normal hours are analyzed. The daily profits of users

and SIES are shown in Figure 5D, and the analysis shows as

follows.

When only demand response is considered without profit

allocation, users may purchase electricity from the grid, and use

gas boilers and electric chillers for heating and cooling because

IES has no price advantage. Since the energy conversion

efficiency of these approaches is lower than that of IES, the

total carbon emissions may be higher. On the other hand, due to

higher peak prices, users will adopt more aggressive demand

response strategies to reduce energy demand or change their

habits to increase demand in the valley in order to save costs. This

is a lose-lose situation for both the integrated energy system and

the user.

When only profit allocation is considered, users cannot

regulate energy demand, and energy demand does not adjust

with price changes, resulting in lower bargaining ability.

By comparing different Mild DR scenarios, a trade-off is

presented between total profit and fairness. As the electricity

price decreases, the profit of users increases, the profit of SIESs

decreases, the fairness increases, and the total profit slightly

decreases. The reason for this trend is that as the price of

electricity decreases, users tend to adopt a relatively moderate

demand response strategy, and the rise in electricity demand

during peak hours leads to a slight increase in the total cost of

energy supply for SIESs. Compared to the “Mild DR-E5” scenario
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with the electricity price reduction of 0.05 RMB/kWh, the cost of

the “Mild DR-E15” with the highest fairness factor increases by

1.02%. And in the “Mild DR-E20” scenario with the electricity

price reduction of 0.20 RMB/kWh, the fairness decreases due to

the high profit of users. The impact of fairness on trading is

greater in this case study, and the price at the peak of fairness is

preferred in trade-off decisions. When the agreed price has a

large impact on both total profit and fairness, some multi-

objective decision-making methods like Euclidean distance-

based methods and Shannon’s entropy-based methods (Jing

et al., 2018) can be used to obtain the optimal trade-off solution.

4 Case study 2

In order to illustrate how this approach works and to verify

the proposed distributed optimization method, a case study has

been investigated in an urban district including residential,

commercial, and industrial areas located in Weifang,

Shandong Province, China. The local climate is cold in winter

and hot in summer (Building Energy Research Center of

Tsinghua University, 2010). In this case, cooling demand

exists only in summer, while heating demand is required only

in winter. According to the energy demand, the whole year is

divided into three typical seasons, i.e., summer, winter, and

transition season.

The energy demand for the whole year is calculated by a tool

called CEA (ETH Zurich, 2022). The simulated district is located

in the cold region of China, and the meteorological data comes

from the region database from EnergyPlus (EnergyPlus, 2022).

The total covered area of the district is 31,206 m2, where

28 buildings are distributed in different areas, as listed in

Supplementary Table S2 of the supplementary material. The

energy demand model of buildings is developed based on the

methodology provided by Fonseca (2016).

The parameters of residential building envelopes are as

follows. 1) The heat transfer coefficients of the roof and

exterior walls are considered as 0.66 W/(m2·K) and 0.75 W/

(m2·K), respectively. 2) The window-to-wall ratios are set as

0.32 for southward, 0.27 for northward, 0.18 for eastward, and

0.18 for westward. 3) The heat transfer coefficients and solar heat

gain coefficient for windows are set as 3.1 W/(m2·K) and 0.6,

respectively. These building planning and location information

will be used as input of the CEA tool, based on which the hourly

electricity, heating, and cooling demands can be obtained.

A subsystem of IES is built in each residential, commercial,

and industrial area. Technical and economic parameters are used

as inputs of the optimization model to determine the installed

FIGURE 5
The demand curve of different demand strategies in a typical day (A), the energy output of the different devices with no carbon emission control
(B) and maximum carbon emission (C), profit of users and SIESs in different scenarios (D).
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capacity of the energy equipment. The major technical

parameters are listed in Supplementary Table S3 (Li et al.,

2016; Wang et al., 2020) of the supplementary material. The

major economic parameters, such as energy prices, unit capital,

and maintenance costs, are listed in Supplementary Table S4

(Wang et al., 2020) of the supplementary material. In the baseline

scenario, users purchase electricity from the grid at the hourly

prices listed in Supplementary Table S4 and use their own gas or

electric boilers for heating and electric chillers for cooling.

The maximum number of full charge-discharge of the battery

is set to 5,000, the maximum depth of discharge/charge is set to

80%, the maximum daily times of charge/discharge is set to 2,

and the life of the storage battery is 20.47 years, which is longer

than the program lifetime, so in this case study, the battery would

not require replacement during the program life. The operation-

related maintenance cost of battery energy storage is 0.095 RMB/

kWh including 0.072 RMB/kWh for degradation and

0.023 RMB/kWh for others.

All modeling and optimization procedures are performed on

an Intel(R) Core (TM) i7-9700 3.00 GHz PC with 16 GB RAM.

The building energy demand is calculated by CEA (ETH Zurich,

2022) tool. The distributed optimization model is developed with

Python Pyomo 5.6.9 (Hart et al., 2017) and solved by GAMS

(Brooke et al., 1998) with CPLEX (CPLEX, 2019) solver.

Influenced by the initial value of optimization and the

selection of the device opening and closing states, the CPU

times range from 4 to 8 min and the number of iterations

ranges from 35 to 50. The stopping tolerance of primal

residuals (εr) is set as 0.2 Wh, and the stopping tolerance of

dual residuals (εs) is set as 0.1 Wh.

5 Results and discussion

5.1 Building demand forecast

The simulated energy demand is compared with the

statistical demand data of residential and commercial

buildings given by the China Association of Building Energy

Efficiency (China Association of Building Energy Efficiency,

2022), and the relative error is within 8%. The error mainly

comes from the heating and cooling prediction, because the local

area is near the sea and has an oceanic climate, which is

characterized by warmer nights in winter and cooler nights in

summer.

The demand statistics and typical daily demand are shown in

Figure 6. The year is divided into winter, summer, and transition

seasons according to heating and cooling conditions. Figures

6(A–C) shows the electricity demand, the heating demand in

winter, and the cooling demand in summer during the year,

respectively. Electricity demand is concentrated during the

daytime and fluctuates in a relatively wide range throughout

the year. Heating demand is relatively flat in winter. Cooling

demand is concentrated during the daytime due to the cool

summer night conditions. The daily demand data are grouped

into six typical days according to the K-medoids method, as

shown in Table 1. Figures 6(D–F) shows the electricity demand in

the transition season, the heating demand in winter, and the

cooling demand in summer respectively. The variation in

electricity demand on each typical day is mainly influenced by

whether the industry is working or not, with peaks occurring

around meal time, while the variation in heating and cooling

demand is mainly influenced by temperature. The total annual

demand calculated from the typical day demand and the

probability of occurrence of each typical day, compared with

the simulated total demand, shows a difference of -0.89% for total

electricity demand, −1.33% for total heat demand, and −3.5% for

total cooling demand. On the other hand, the K-Medoids method

retains the original hour-by-hour energy demand. Combined

with the box plots of the annual demand statistics in Figures

6(A–C), it can be seen that the typical daily demands in Figures

6(D–F) are located near the upper and lower quartiles of the box

plots (i.e., Q1 and Q3). Therefore, the typical daily data can

describe the volatility of energy demand and can be used for the

optimization of IES with a certain degree of confidence.

Figures 6(G–I) shows the hour-by-hour demand by area for

typical days with higher demand, i.e., cluster 1. In Figure 6G,

electricity demand is mainly from the industrial area, with

demand concentrated and relatively stable during the daytime.

The commercial area has the second highest electricity demand,

which is concentrated in the time period of 8–22. Residential area

consumes the least electricity, with energy demand concentrated

around meal time and night. In Figure 6H, the overall heating

demand is relatively stable throughout the day, but the peak

hours of energy demand vary by area. The heating demand in

residential areas is mainly concentrated in the time of evening

and early morning when people are at home and the temperature

is lower. While the heating demand of commercial areas is

concentrated in the daytime when there is a large stream of

people. The cooling demand in summer mainly comes from

residential and commercial areas and is concentrated in the

daytime, which is influenced by the temperature, as shown in

Figure 6I.

5.2 Planning of subsystems of multi-area
integrated energy systems

The planning of different subsystems of the multi-area IES is

optimized based on the six typical day data extracted in Section

5.1 and themodel in Section 2.3.1. Themicro gas turbines (MGT)

are chosen as the main equipment for the CHP unit. The Pareto

frontiers of the planning of subsystems in residential, industrial,

and commercial areas are shown in Figures 7A–C, respectively,

and the typical planning with different ATC and ACE are shown

in Figure 7D and Supplementary Table S5 of the supplementary
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material. The subsystem of IES built in residential, industrial, and

commercial areas are represented by SIES-R (Subsystem of

Integrated Energy System in Residential area), SIES-I

(Subsystem of Integrated Energy System in Industrial area),

and SIES-C (Subsystem of Integrated Energy System in

Commercial area), respectively. As shown in Figure 7D, the

capacity of absorption chillers and battery energy storage

systems increases with the reduction of carbon emission. A2,

B2, and C2 are the preference points of TOPSIS (Jing et al., 2019).

In order to make sure that the total carbon emission is lower than

35% of the baseline scenario, and to ensure that the total energy

supply cost for the three suppliers is lower than 75% of the

baseline scenario, A3, B3, and C3 are chosen as the preference

points.

5.3 Distributed optimization results

Based on the supply and carbon reduction costs as shown in

Supplementary Table S5, the maximum amount of carbon

emission for subsystems of different areas is determined, and

the results are given in Table 2. The upper limit of the uplift

factor (κ in Eq 22 is set as 5%, i.e., the carbon emission of each

subsystem cannot be higher than 105% of the maximum

amount of carbon emission in Table 2. Since the total

carbon emissions of the three subsystems during the

planning phase are no higher than 35% of the baseline

scenario, the total amount of carbon emissions is controlled

as 35% of the baseline scenario. And according to the energy

output of the devices, without maximum carbon emission, the

subsystems of IES tend to shut down their CHP systems and

purchase electricity from the grid during low tariff hours, with

21.35% of total annual electricity from the grid. With maximum

FIGURE 6
Plot of the forecasted energy demand. Figure (A–C) show the annual statistics of hourly electricity, heating, and cooling demand. Hourly
electricity demand in the transition season, heating demand in winter, and cooling demand in summer for the typical days are shown in (D–F),
respectively. Typical hourly electricity, heating, and cooling demand for cluster one in each region are shown in (G–I).

TABLE 1 Typical day statistics.

Season Cluster Number
of typical days

Transition season Cluster 1 104

Transition season Cluster 2 18

Winter Cluster 1 78

Winter Cluster 2 42

Summer Cluster 1 37

Summer Cluster 2 86
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carbon emission, the subsystems tend to supply electricity by

CHP during winter and some other low tariff hours to reduce

carbon emissions, and the ratio of electricity from the grid

decreases to 11.07%. With a 4.87% increase in the cost, a 9.43%

reduction in carbon emissions is achieved.

The profit of the subsystems is defined as the energy sales

price minus its cost, and the profit of the load aggregator is

calculated as the cost difference between the baseline cost and the

purchased energy at the agreed price. The baseline cost is set as

the cost of users purchasing electricity from the grid and using

FIGURE 7
The results of the planning optimization of subsystems. Pareto frontiers of subsystem planning in residential, industrial, and commercial areas
are shown in (A–C). Figure (D) shows the installed capacity, annual total cost, and annual carbon emission for typical planning.

TABLE 2 Annual energy supply and carbon reduction cost.

SIES-R SIES-I SIES-C

Electricity (MWh) 652.56 1875.18 1778.63

Heating (MWh) 1169.13 487.19 1265.82

Cooling (MWh) 99.61 69.03 161.77

Carbon reduction cost (103 RMB) 166.95 328.64 298.10

Maximum amount of carbon emission (tons/year) 383.23 720.27 728.70

Proportion of carbon emission allocated (%) 20.92 39.31 39.77
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their own gas or electric boilers and electric chillers for energy

supply. The results of the distributed optimization for each

subsystem are shown in Figure 8. The cost reduction of

different users at the optimal agreed price is shown in

Figure 9. The optimal agreed price for electricity is 0.12 RMB/

kWh, lower than the price of grid electricity for peak hours and

normal hours, and the optimal agreed price for heating or cooling

is 5% lower than the user’s own heating or cooling costs.

After about 40 iterations, the model reaches convergence,

and the results are shown in Figure 8A, where the cost of SIES-R

and SIES-I decreases as the cost of SIES-C increases. In Figure 8B,

during valley tariff periods, electricity is supplied by CHP unit

and battery energy storage of subsystem in winter, while in other

periods, electricity tends to be purchased from the grid. The

reason is that the cost of generating electricity from CHP units is

higher than the cost of grid electricity in the valley tariff periods,

and the heat generated by CHP units can be used efficiently in

winter when heating is required. During the peak tariff periods,

electricity is mainly generated by CHP units. In winter, heating

energy is mainly provided by SIES-R and SIES-C because the

main heating demand comes from residential and commercial

areas. The energy output of multi-area IES tends to be flat, and

SIES-R provides more electricity and heating during the daytime,

compared to the case that traditional energy systems individually

supply energy to the area where it is located. Figure 8E shows the

ratio of total annual energy supply, cost, and profit for each

subsystem. Both SIES-R and SIES-C have a slightly higher profit

ratio than their energy cost ratio, as both SIES-R and SIES-C

supply more heating and cooling and have higher overall energy

supply efficiency.

To further analyze the impact of the coordinated

optimization on the energy costs of different users, the energy

costs of users under four different scenarios are determined, and

the results are shown in Figure 9A. And the scenario setting is

shown in Table 3, where DR represents the scenario only

considering the demand response of users, and TA represents

the scenario in which the subsystem of the multi-area IES

transact with users at the optimal agreed price. The DR-C and

FIGURE 8
The results of distributed optimization for typical days. Figure (A) shows the system cost in the iteration progress. The output electricity, heating,
and cooling are shown in (B–D), respectively. Figure (E) shows the output and profit allocation for different IES.
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TA-C scenarios further consider curtailment of electricity

demand by industrial and commercial users. According to an

assessment of demand response market potential prepared by

Environmental Change Institute & Oxford Institute for Energy

Studies and University of Oxford (2015), the demand curtailable

rate for medium-sized commercial and industrial users is

assessed to be between 2% and 7% in 2025. In the case study,

the whole day’s electricity demand cuttable ratio is set at 5% for

industrial users and 3% for commercial users.

In other words, the energy prices used in the DR and DR-C

scenarios are calculated based on purchasing electricity from the

grid and using gas or electric boilers and electric chillers for

energy supply, while the energy prices used in the TA and TA-C

scenarios are the prices with optimal profit allocation. With

demand response, users reduce their energy demand during

peak periods and increase energy demand during off-peak

periods. The total electricity, heating, and cooling demand

response are shown in Figures 9(B–D), respectively. In the DR

scenario, user cost reduction varies from 3% to 11%, and

industrial users have a lower rate of cost reduction because

they have less heating demand curtailment. With the further

curtailment of electricity demand by industrial and commercial

users, the cost reduction rates increase to about 9% for industrial

users and about 6% for commercial users in the DR-C scenario.

Transaction agreements can significantly reduce costs for users,

with a cost reduction ratio ranging from 11% to 16% in the TA

scenario. The optimal results are obtained with transaction

agreements and electricity demand curtailment by industrial

FIGURE 9
The results of demand response of uses. Figure (A) shows the total annual cost and cost reduction ratios for each user under different scenarios.
The total electricity, heating, and cooling demand response of users on typical days are shown in (B–D).

TABLE 3 The scenario setting.

Baseline DR DR-C TA TA-C

Energy supply system Gird, GB, EB, and EC SIES SIES SIES SIES

Demand response — √ √ √ √

Profit allocation — — — √ √

Demand curtailment — — √ — √

GB, gas boiler; EB, electric boiler; EC, electric chiller; SIES, subsystem of integrated energy systems.
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and commercial users, with a cost reduction of 13% or more for

all users in the TA-C scenario.

5.4 Price sensitivity analysis

The agreed electricity price derived in the previous section is

0.12 RMB/kWh, which is lower than the grid price during peak

and normal hours. The agreed heating and cooling price is 5%

lower compared to the user’s own heating and cooling costs. In

order to explore the impact of the agreed prices on the

participants, this section analyzes the profit allocation for each

supplier and the cost reduction for each user at different prices.

Figure 10A shows the variation of energy prices with time. The

electricity prices are lower than grid prices during peak and

normal hours, with reductions ranging from 0.05 to 0.15 RMB/

kWh. The heating and cooling prices are lower than the user’s

own costs for the whole 24 h, with reductions ranging from 5% to

15% of the user’s own costs. Figure 10B shows the profit

allocation at different prices and the fairness factor ωfair in

Eqs 30a,b is used to evaluate the fairness of the profit distribution.

The different scenarios are named according to the value of the

decrease in electricity price and the decreased proportion of

heating and cooling price. For example, E05H08C08 represents a

0.05 RMB/kWh decrease in electricity price and an 8% decrease

in heating or cooling price. As seen in Figure 10B, the top four

scenarios in terms of the fairness factor ωfair show larger

reductions in electricity prices and smaller reductions in

heating and cooling prices. While high electricity prices lead

to an obvious decrease in the fairness factor ωfair, scenario

E05H08C08 has a significantly lower ωfair than scenario

E10H08C08 and scenario E12H08C08. In contrast, high

heating and cooling prices lead to a higher ωfair, for example,

scenario E12H12C12 with higher heating and cooling prices has

a higher ωfair than scenario E12H08C08 and scenario

E12H05C05. Figure 10C shows the impact of electricity price

changes on the cost reduction for different users at a fixed heating

and cooling price. It is seen that electricity price reduction has a

general effect on cost reduction for all users, and the reductions

are higher for industrial users including B1016-B1020, and

commercial users including B1024-B1028. It is because these

users have higher electricity demand but lower heating and

cooling demand. Furthermore, Figure 10D shows the impact

of variations in heating and cooling prices on the cost reduction

FIGURE 10
The results of the sensitivity analysis of energy prices. Figure (A) shows the variation of energy prices with time. Figure (B) shows the profit
distribution between LA and suppliers at various prices. Figure (C) shows the impact of electricity prices on cost reduction by the percentage of
different users. Figure (D) shows the impact of heating and cooling prices on cost reduction by the percentage of different users.
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for different users at a fixed electricity price. The influence is

greater for residential users including B1001-B1011 and B1014-

B1015, as well as for hotel users including B1021-B1023, as these

users have higher heating and cooling demand.

5.5 Convergence analysis

In this section, the convergence of the model is investigated.

In addition to algorithm design, initial value selection and

parameter setting also affect model convergence. The previous

section has discussed that the overall optimization performance

can be improved and convergence can be achieved faster through

the initial value selection and the varying penalty parameter. On

the other hand, the accuracy of the result is affected by the

stopping tolerance, and the number of iterations can be

controlled by using the maximum allowed iterations. Specific

parameter values can be selected for each case. Specific parameter

values can be selected by considering the case needs, and the

influence of the maximum allowed iterations and stopping

tolerance is analyzed for the case study.

As described in Section 2.3, the iteration terminates when the

stopping condition in Eqs 27a,b, 28a,b is satisfied or when the

maximum allowed iterations (K) is reached. The convergence

rate of the model depends on the stopping tolerance and

maximum allowed iterations. In this study, the stopping

tolerance of dual residuals (εs) is chosen to be one-half of the

stopping tolerance of primal residuals (εr). The impact of

stopping tolerance for primal residuals (εr) on the total cost

and the required iteration number are plotted in Figure 11, where

the x-axis uses a logarithmic scale with a base of 10. As shown in

the figure, when the stopping tolerance is large, e.g., εr>0.1, the
stopping tolerance has a considerable impact on the convergence

cost. As the stopping tolerance decreases, its impact on the cost

gradually decreases. When the stopping tolerance is small

enough, e.g., εr<0.01, the impact of stopping tolerance on the

cost is negligible, but convergence requires a large number of

iterations.

The maximum allowed iterations (K) is another parameter

that influences the convergence value. In a matter of fact, this

parameter acts as a stopping value to ensure that the iteration is

always terminated. When the number of iterations reaches K, the

value of the last iteration is assigned as the result. In Figure 12, the

impact of the maximum allowed iterations on the total cost of

energy supply is plotted for different values of εr. As shown in

Figure 12, a lower K leads to a higher total cost, and when K is

large enough, the impact on the cost is negligible because the

algorithm converges before the maximum allowed iterations are

reached. Therefore, there is a trade-off in parameter selection in

terms of enhancing the scalability of the model and improving

the optimization capability of the algorithm.

5.6 Strengths and limitations

The proposed framework is suitable for a high-level

evaluation of the long-term overall benefits considering the

independent strategy of users and subsystems of IES. In the

overall optimization of the multi-area IES, the behavior

strategies of users and subsystems can be effectively analyzed

by adopting proposed demand response and distributed

optimization models. Meanwhile, in the operation

optimization, the long-term overall objectives such as annual

total costs and annual carbon emissions can be considered by

the proposed multi-objective optimization method. Moreover,

in energy trading, fairness between the users and subsystems

with conflicting interests can be ensured by using the proposed

FIGURE 11
The results of convergence analysis on stopping tolerance.
The impact of stopping tolerance on the total cost and the
required iteration number are shown in (A,B), respectively.

FIGURE 12
Impact of the maximum allowed iterations at different
stopping tolerances on the energy supply cost.
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profit allocation method. However, this framework may not be

suitable for the operation optimization across multiple

consecutive days, since the discrete typical day-based

optimization is adopted to address the model complexity.

The time series of consecutive days is missing in the typical

day-based method. To apply this framework in operation

optimization across days, the objectives such as annual total

costs and annual carbon emissions need further study to enable

dynamic division across seasons and multiple consecutive days.

6 Conclusion

To address the challenges of the insufficient operational

independence of subsystems and unclear demand response

strategies of users and unclear profit allocation in the multi-

area optimization of IES, the present study proposed a holistic

approach that includes user demand response as well as

distributed optimization of the multi-area IES. In this study,

different participants such as users and subsystems of IES are

modeled as rational agents with independent optimization

objectives. The multi-objective decision-making of the

centralized planning approach is adopted. And fair and

reasonable pricing and profit allocation method is established

for the supply-demand matching and energy trading between

agents with conflicting interests. The main conclusions are

summarized as follows.

1) The behavior strategies of users and subsystems in the

optimization process can be effectively analyzed by treating

these participants as rational agents. Meanwhile, by using a

distributed algorithm, the overall objective is ensured to be

optimized while the subsystem is optimized.

2) The operation of subsystems is effectively regulated to meet

long-term benefits by coupling long-term objectives into

distributed operation optimization. Considering long-term

objectives, the carbon emissions of the system operation are

reduced by 9.43% compared to the case without the long-term

objectives.

3) Increasing overall benefits and ensuring fairness can be

achieved by using the proposed demand response and

profit allocation methods. Considering profit allocation,

users are more likely to purchase energy from IES than to

adopt an aggressive response strategy, purchase energy from

the grid or use their own supply equipment. In the case study,

the energy cost of different users can decrease by 13%–17%

compared to the baseline.

In summary, this study provides a holistic framework for the

design and operation, supply-demand coordination, and

transaction pricing of multi-area IES involving long-term

planning and construction with multiple interests. The next

step of the research will be focused on the combination of

long- and short-term operation optimization objectives to

improve the guidance for short-term operation optimization.

In addition, the analysis will focus on unstable low-carbon

technologies such as PV and wind power.
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Nomenclature

Abbreviations

IES integrated energy system

ADMM alternating direction method of multipliers

LA load aggregator

CHP combined heat and power

HP heat pump

AC absorption chiller

EC electric chiller

PV photovoltaic

WT wind turbine

BES battery energy storage

TST thermal storage tank

MILP mixed integer linear programming

CAPEX capital expenditure

FC fuel cost

MC maintenance cost

CRF capital recovery factor

ATC annual total cost

ACE annual carbon emission

Symbols

Obj objective function

C cost

E energy demand for users and energy supply for suppliers

Q thermal energy

prob probability of each typical day

Greek symbols

λ Lagrangian operator

ρ penalty factor

ε stopping tolerance

η efficiency

θ fitting parameters

σ heat-power ratio of CHP

χ on/off status

Subscripts/superscripts

b boiler

el electricity

he heating

co cooling

i user

n supplier

s typical day

h hour

k iteration

emi carbon emission

L lower bound
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