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ABSTRACT 
 

One of the most important classes of nonlinear differential equations that have a great deal of 
applications is the Riccati Differential Equations (RDEs). In this paper, a quarter-step method is 
derived for the solution of RDEs by collocating and interpolating the Laguerre polynomial basis 
function. To establish the reliability and applicability of the method on RDEs, some model problems 
have been solved. The results obtained in terms of the point wise absolute errors show that the 
method developed approximates the exact solution closely. The research further investigated the 
basic properties of the method developed and found it to be zero-stable, consistent and 
convergent. 
 

 

Keywords: Computational; nonlinear; quarter-step; RDEs. 
 

2010 AMS subject classification: 65L05, 65L06, 65D30. 
 

1. INTRODUCTION 
 

The RDE named after the Italian nobleman 
Count Jacopo Francesco Riccati (1676-1754) 
find applications in random processes, optimal 
control and diffusion problem, [1]. Besides its 

applications in engineering and science that 
today are considered classical, the RDE is also 
applied in financial mathematics [2], robust 
stabilization, stochastic realization theory, 
network synthesis and optimal control [3]. Also, 
according to [4], the RDE is an essential tool for 
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modeling many physical situations such as 
spring mass systems, resistor-capacitor-
induction circuits, bending of beams, chemical 
reactions, pendulum, and the motion of rotating 
mass around body. The RDE are also found to 
be applicable in oscillations, [5]. 
 
In view of these applications, we are motivated to 
derive a computational method for the solution of 
RDEs of the form; 
 

2'( ) ( ) ( ) ( ) ( ) ( ), 0y t a t b t y t c t y t t T      (1) 

 
with initial conditions, 
 

0 0( )y t y                          (2) 

 

where ( ), ( ), ( )a t b t c t  are continuous with 

( ) 0c t   and 0 0,t y  are arbitrary constants for 

( )y t  which is an unknown function. 

 

The RDE in (1) can also be denoted by the 
equation below; 
 

'( ) ( , )y t f t y                           (3) 

 

The general solution of a class of RDE shall be 
presented below in the form of a theorem. 
 
Theorem 1 [6] 
 

Consider the RDE 
 

2'( ) ( ) ( ) ( ) ( )y t p t y t y t q t                    

(4) 
 

with the initial condition 0 0( )y t y  for some 

initial value 0t . Assume that 0 0( ) 0q t q   and 

that the integral 

0

( )
t

t

p d   exists. Assume 

further that the function ( )q t  satisfies the 

relation 
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             (5) 

 

for some constant K . Then, the general solution 
of (5) is given by, 

( ) ( ) ( )y t f t q t                          (6) 

 

where the function ( )f t  is given by, 
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and the functions ( ); 1,2,3n t n   are given by 
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( ) ( )
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n n
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and 
 

2 4K    
 

24 K    

 
See [6] for proof 
 
The RDE has been studied by some 
researchers. They adopted different methods in 
solving the RDEs. These methods include the 
Adomian Decomposition Method (ADM) 
[7,8,9,10], Variational Iteration Method (VIM) 
[11,12,13,14,15,16,17], Chebyshev wavelets 
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[18], classical fourth order Runge-Kutta method 
[19], hybrid function and Tau method [20], 
Differential Transformation Method (DTM) 
[21,22], Non-Standard Finite Difference Method 
(NSFDM) [3], Homotopy Analysis Method (HAM) 
[23,24], Homotopy Perturbation Method (HPM) 
[8,25,26], among others. 
 

It is important to state that the above mentioned 
methods have some setbacks in their 
performance on the RDEs. For instance, in 
applying the ADM, very complicated and tough 
Adomian polynomials have to be constructed 
which make the work cumbersome. In the VIM, 
identification of Lagrange multipliers yields an 
underlying accuracy. The HPM needs a linear 
functional equation in each iteration to solve 
nonlinear equations, forming these functional 
equations could be very difficult. The 
performance of HAM is very much dependent on 

the choice of the auxiliary parameter h  of the 
zero-order deformation equation. Moreover, the 
convergence region and implementation of these 
results are very small. 
 

In view of the foregoing, an alternative 
computational method shall be constructed             

in this research for the solution of RDEs of the 
form (1). 

2. FORMULATION OF THE METHOD 
 
A computational method of the form, 
 

(0) ( ) ( )m n n mA E hd hb  Y y f y F Y       (7) 

 
will be developed for the solution of RDEs of the 

form (1), where 
(0) , ,A E d and b  are r r  

matrices ( r  is the number of collocation points). 

, , ( ) ( )m n m nY y F Y and f y  are vector matrices 

with r  entries.  
 
In doing this, the Laguerre polynomial shall be 
adopted as a basis function. The Laguerre 
polynomial is generally given by, 
 

 
1

0

( )
!

t nr s
n t

n
n

e d
y t t e

n dt

 




                (8) 

 

where  r and s  are the numbers of collocation 

and interpolation points respectively.  
 

 
Let the approximate solution to (1) be given by Laguerre polynomial of degree 5, by allowing 

1 5r s    in equation (8), that is, 
 

 
5

2 3 4 5

0

( ) 720 1800 1200 300 30
!

t n
n t

n
n

e d
y t t e t t t t t

n dt




 
       

 
                   (9) 

 
with the first derivative given by, 
 

2 3 4'( ) 1800 2400 900 120 5y t t t t t             (10) 

 
Substituting (10) into (3) gives, 
 

2 3 4( , ) 1800 2400 900 120 5f t y t t t t            (11) 

 

Now, interpolating (9) at point , 0n st s   and collocating (11) at points
1 1

, 0
16 4

n rt r

 
  

 
, leads to a 

system of nonlinear equation of the form, 
 

TA U            (12) 
 
 where  
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T
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T
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Solving (12) by Gauss elimination method for the ' , 0(1)5ja s j  and substituting back into the 

Laguerre polynomial basis function gives a linear multistep method of the form,   
 

1

4

0
0

1 1
( ) ( ) ( ) , 0

16 4
n j n j

j

y t t y h t f j  


 
    

 
        (13) 

 

where the coefficients of n n jy and f   are given as, 
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and x  is given by  
 

nt t
x

h


              (15) 

 

Evaluating (13) at 
1 1 1

16 16 4
t

 
  

 
, gives a discrete computational method of the form  (7) given by, 
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3. ANALYSIS OF THE METHOD 
 
Some basic properties of the computational method derived shall be discussed in this section.  
 
3.1 Order of Accuracy of the Method 
 
The linear operator of the computational method derived in equation (16) is expressed as, 
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Expanding (17) in Taylor series about nx , we have 

1
'

0 0

1
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                        (18) 
Hence,  
 

9 10 9 11
0 1 2 3 4 5 60, 1.1176 10 6.6227 10 1.1176 10 3.1537 10

T

c c c c c c c                 
 

 
Therefore, the computational method (16) is of 

uniform order 5p   and the error constant is        

[ 1176.1 ×
910

  6227.6 ×
1010

 1176.1 ×
910

  

1537.3 ×
1110

]T 

 

3.2 Consistency of the Method 
 
The computational method (16) is consistent 

since it has uniform order 5 1p   . 

 

3.3 Zero Stability of the Method 
 
Definition 3.1 [27]: A block method is said to be 

zero-stable, if the roots kszs ,...,2,1,   of the 

first characteristic polynomial )(z  defined by 

)det()( )0( EzAz   satisfies 1sz  and 

every root satisfying 1sz  have multiplicity not 

exceeding the order of the differential equation.  
 
For the computational method (16), the first 
characteristic polynomial is given by,  
 

1 0 0 0 0 0 0 1

0 1 0 0 0 0 0 1
( )

0 0 1 0 0 0 0 1

0 0 0 1 0 0 0 1

z z

   
   
    
   
   
   

 

3

0 0 1

0 0 1
( 1)

0 0 1

0 0 0 1

z

z
z z

z

z




  





 

 
Thus, solving for z in  
 

3 ( 1) 0z z              (19) 

 

gives 1 2 3 40 1z z z and z    . Hence, the 

computational method (16) is zero-stable. 
 
3.4 Convergence of the Method 
 
The method (16) is convergent since it is 
consistent and zero-stable. 
 
Theorem 3.1 [5] 
 
A method is convergent if and only if it is zero 
stable and consistent. 
 

3.5 Region of Absolute Stability of the 
Method 

 
Applying the boundary locus method, the stability 
polynomial of the computational method (16) is 
given by, 
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         (20) 

 
The region of absolute stability of the method is therefore shown in Fig. 1. 
 

 
 

Fig. 1. Stability Region for the computational method 
 

The RAS obtained in Fig. 1 is L-stable since it is 
A-stable and also encroaches into the positive 
half of the complex plane, [28].               
 

4. RESULTS 
 
4.1 Numerical Experiments    
 
The computational method derived shall be 
applied on some modeled RDEs to test how 
reliable and efficient the method is. 
 
The following notations shall be used in the 
Tables below: 
 

ERR= Absolute error in the computational 
method 

Eval t =Evaluation time per seconds 
EFA-Absolute error in [19] 
EYH-Absolute error in [20] 
ENB-Absolute error in [25] 

 
Problem 4.1:  
 
Consider the Riccati differential equation,  
 

2'( ) 1 2 ( ) ( )y t y t y t                        (21) 

 

with the initial conditions, 
 

(0) 0y                           (22) 

 

The exact solution is given by, 
 

1 2 1
( ) 1 2 tanh 2 log

2 2 1
y t t

  
        

      (23) 

 

Source: [19] 
 

Problem 4.2: 
 

Consider the Riccati differential equation,     
 

2'( ) 1 ( )y t y t                         (24) 

 

with initial conditions, 
 

(0) 0y                                           (25) 

 

The exact solution to the problem is 
 

2
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Source: [20] 
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Table 4.1. Showing the result for problem 4.1 
 

t              Exact solution             Computed solution       ERR                     EFA                 Eval t  
0.1000    0.1102951969169624    0.1102951968849455    3.201692e-011     2.2551e-06     0.2436    
0.2000    0.2419767996211093    0.2419767992452385    3.758708e-010     4.7763e-06     0.2454    
0.3000    0.3951048486603785    0.3951048472221335    1.438245e-009     7.3083e-06     0.2472    
0.4000    0.5678121662929389    0.5678121629380356    3.354903e-009     9.5635e-06     0.2490    
0.5000    0.7560143934313761    0.7560143878578516    5.573525e-009     1.1301e-05     0.2508    
0.6000    0.9535662164719235    0.9535662096167838    6.855140e-009     1.1301e-05     0.2526    
0.7000    1.1529489669796242    1.1529489609377850    6.041839e-009     1.2408e-05     0.2545    
0.8000   1.3463636553683762    1.3463636521999636    3.168413e-009     1.2940e-05     0.2565    
0.9000   1.5269113132806256    1.5269113134142971    1.336715e-010     1.3100e-05     0.2584    
1.0000   1.6894983915943840    1.6894983930867824    1.492398e-009     1.3245e-05     0.2602   
  

Table 4.2. Showing the result for problem 4.2 
 

t              Exact solution              Computed solution      ERR                    EYH                Eval t  
0.1000    0.0996679946249558    0.0996679946249443    1.149081e-014    4.1401e-07     0.1259     
0.2000    0.1973753202249040    0.1973753202248368    6.716849e-014    6.0186e-07     0.1277    
0.3000    0.2913126124515909    0.2913126124514075    1.833533e-013    7.3747e-07     0.1294    
0.4000    0.3799489622552250    0.3799489622548863    3.386180e-013    1.7322e-07     0.1311    
0.5000    0.4621171572600099    0.4621171572595237    4.861112e-013    6.8524e-07     0.1328    
0.6000    0.5370495669980354    0.5370495669974555    5.798695e-013    7.9810e-07     0.1453     
0.7000    0.6043677771171637    0.6043677771165689    5.948575e-013    9.2621e-07     0.1470    
0.8000    0.6640367702678491    0.6640367702673163    5.327960e-013    2.8318e-07     0.1487    
0.9000    0.7162978701990247    0.7162978701986086    4.161116e-013    6.6469e-07     0.1504    
1.0000    0.7615941559557652    0.7615941559554906    2.745582e-013    7.2660e-07     0.1521 
 

 
 

Fig. 2. Graphical results for problem 4.1 
 

 
 

Fig. 3. Graphical results for problem 4.2 
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Problem 4.3:  
 
Consider the Riccati differential equation,  
 

21
'( ) ( ) ( )

1
y t y t y t

t
   


        (27) 

 
with the initial conditions, 
 

(0) 1y                                                     (28) 

 
The exact solution is given by, 
 

1
( )

1
y t

t



                                   (29) 

 
Source: [19] 
 
Problem 4.4:  
 
Consider the Riccati differential equation, 
 

2'( ) 10 3 ( ) ( )y t y t y t             (30) 

 
whose initial conditions are, 
 

(0) 0y                           (31) 

 
The exact solution is given by, 
 

7

7

14
( ) 2

5 2

t

t

e
y t

e
  


          (32) 

 
Source: [25] 
 
Problem 4.5:  
 
Consider the Riccati differential equation,  
 

2'( ) ( ) 1y t y t                                     (33) 

 
with the initial conditions, 
 

(0) 0y                                                   (34) 

 
The exact solution is given by, 
 

( ) tanh( )y t t                                     (35) 

 
Source: [25] 
 

Table 4.3. Showing the result for problem 4.3 
 

t              Exact solution              Computed solution      ERR                    EFA               Eval t  
0.1000    0.9090909090909091    0.9090909090932011    2.292055e-012    3.8296e-07     0.0197    
0.2000    0.8333333333333334    0.8333333333364473    3.113954e-012    3.8296e-07     0.0218    
0.3000    0.7692307692307692    0.7692307692341456    3.376410e-012    5.7951e-07     0.0236    
0.4000    0.7142857142857142    0.7142857142891383    3.424150e-012    6.8133e-07     0.0256    
0.5000    0.6666666666666666    0.6666666666700610    3.394396e-012    7.3394e-07     0.0274    
0.6000    0.6250000000000000    0.6250000000033436    3.343548e-012    7.6091e-07     0.0293    
0.7000    0.5882352941176470    0.5882352941209419    3.294920e-012    7.7483e-07     0.0312    
0.8000    0.5555555555555555    0.5555555555588129    3.257394e-012    7.8257e-07     0.0330     
0.9000    0.5263157894736841    0.5263157894769185    3.234413e-012    7.8799e-07     0.0349    
1.0000    0.4999999999999999    0.5000000000032264    3.226530e-012    7.9326e-07     0.0368 
 

 
 

Fig. 4. Graphical results for problem 4.3 
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Table 4.4. Showing the result for problem 4.4 
 

t              Exact solution              Computed solution      ERR                     ENB               Eval t  

0.1000    1.1229599550199856    1.1229599521930569    2.826929e-009    
61.5 10       0.0321       

0.2000    2.3303636672393440    2.3303636731387738    5.899430e-009    
63.2 10       0.0493    

0.3000    3.3592985913921902    3.3592986597014036    6.830921e-008    
78.0 10       0.0667    

0.4000    4.0762561998939519    4.0762563498062434    1.499123e-007    
63.2 10       0.1056    

0.5000    4.5086402379423145    4.5086404218874883    1.839452e-007    
63.7 10       0.1229    

0.6000    4.7470598637518648    4.7470600293402532    1.655884e-007    
79.7 10       0.1419    

0.7000    4.8720664654895440    4.8720665901929827    1.247034e-007    
61.0 10        0.1594    

0.8000    4.9358801511182619    4.9358802354308153    8.431255e-008    
78.5 10       0.1766    

0.9000    4.9680115179081801    4.9680115711478425    5.323966e-008    
72.1 10       0.1939    

1.0000    4.9840783622386367    4.9840783943645039    3.212587e-008    
61.4 10       0.2985    

 

 
 

Fig. 5. Graphical results for problem 4.4 
 

Table 4.5. Showing the result for problem 4.5 
 

t              Exact solution               Computed solution       ERR           ENB     Eval t  

0.1000    -0.0996679946249558    -0.0996679946249443    1.147693e-014     
71.8 10        0.2514    

0.2000    -0.1973753202249040    -0.1973753202248368    6.714074e-014     
61.2 10        0.2530    

0.3000    -0.2913126124515909    -0.2913126124514075    1.834088e-013     
62.7 10        0.2547    

0.4000    -0.3799489622552249    -0.3799489622548863    3.385625e-013     
63.5 10        0.2564    

0.5000    -0.4621171572600099    -0.4621171572595237    4.861112e-013     
62.9 10        0.2594    

0.6000    -0.5370495669980354    -0.5370495669974555    5.798695e-013     
61.6 10        0.2610    

0.7000    -0.6043677771171636    -0.6043677771165689    5.947465e-013     
78.7 10        0.2627    

0.8000    -0.6640367702678492    -0.6640367702673163    5.329071e-013     
79.2 10        0.2645    

0.9000    -0.7162978701990246    -0.7162978701986086    4.160006e-013     
61.1 10         0.2661    

1.0000    -0.7615941559557651    -0.7615941559554906    2.744471e-013     
71.8 10        0.2678   

 

5. DISCUSSION OF RESULTS 
 

From the results above, it is obvious that the 
computational method derived is efficient in 
handling RDE and other first order differential 
equations of the form (1). The stability region 
obtained also shows that the method can 

effectively handle even stiff equations since it is 
L-stable. The evaluation time per seconds 
obtained were very small, showing that the 
method derived generates results faster. The 
analysis presented also show that the method is 
convergent, consistent and zero-stable. 
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Fig. 6. Graphical results for problem 4.5 
 

6. CONCLUSION 

 
The method developed in this research has been 
shown to be efficient in solving RDEs of the form 
(1). Thus, the computational method is an 
alternative approach for solving RDEs. 
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