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Abstract

We perform a global 2.5D general-relativistic radiation magnetohydrodynamic simulation of supercritical accretion
onto a neutron star with a 2× 1010 G dipolar magnetic field, as a model of a neutron-star-powered ultraluminous
X-ray source (ULX). We compute a lower limit on the total luminosity of∼2.5 LEdd, and find the radiation to be
highly beamed by the accretion disk outflows. The apparent isotropic luminosity, which is a function of the
viewing angle, reaches a maximum above 100 LEdd, consistent with the luminosities observed in ULXs.

Unified Astronomy Thesaurus concepts: Ultraluminous x-ray sources (2164); Magnetohydrodynamical simulations
(1966); Neutron stars (1108)

1. Introduction

Ultraluminous X-ray sources (ULXs) are extragalactic, non-
active-galactic-nucleus X-ray sources with luminosities exceeding
1039 erg s−1 (Kaaret et al. 2017). Observations, in a handful of
ULXs, of coherent pulsations of ∼1 s periodicities (Trudolyubov
2008; Bachetti et al. 2014; Motch et al. 2014; Fürst et al. 2016;
Israel et al. 2017a, 2017b; Townsend et al. 2017; Tsygankov et al.
2017; Brightman et al. 2018; Carpano et al. 2018; Doroshenko
et al. 2018; Fürst et al. 2018; Heida et al. 2019; Chandra et al.
2020) have shown that at least some of these sources are powered
by slowly rotating neutron stars accreting above their critical
limits,  h=M L cEdd Edd

2, where η∼ 0.2 is the binding energy per
unit mass at the surface of the neutron star (Syunyaev & Shakura
1986) and LEdd= 4πGMmpc/σT is the Eddington luminosity of an
object with mass M.

For low accretion rates η is also the expected radiative
efficiency, and the luminosity is proportional to the mass
accretion rate,  =L L M MEdd Edd. However, due to their
extremely large optical depths, accretion disks with  M MEdd
can no longer cool efficiently. The accretion flow traps photons
and the advection of radiation becomes the primary mode of
energy transport in the disk (Begelman 1978; Abramowicz et al.
1988; Saḑowski & Narayan 2016; Czerny 2019). The large
concentration of photons launches a radiation-pressure-driven
outflow, which originates at the radius where the radiation flux
through the surface of the disk becomes super-Eddington
(Shakura & Sunyaev 1973). The outflow extends from this
radius (referred to as the spherization radius) down to the inner
edge of the accretion disk. Because of advection, the value of the
spherization radius will differ somewhat from its classic thin-
disk value (Shakura & Sunyaev 1973). In fact, a substantial
fraction of the photons in the radiation-pressure-dominated inner
disk will be advected to the vicinity of the stellar surface and
released there. How it escapes to infinity is the major focus of
this Letter.

King et al. (2001) suggested long before the first pulsating
ULXs were observed that the outflows from a super-Eddington
disk could collimate the emission released near the compact
object, in a manner similar to the collimation predicted by the
thick disk model of the Warsaw group (Abramowicz et al. 1978;
Paczyński & Wiita 1980). The system would then appear to be
very bright when viewed face-on, and the inferred isotropic

luminosity Liso= F/(4πd2), where F is the radiation flux
measured by the observer and d is the distance to the source,
would be much larger than the true luminosity, L, i.e., the total
emitted radiation power.
An additional interesting feature of pulsating ULXs is their

unusually high spin-up rates. Kluźniak & Lasota (2015) inferred
a dipole field of ∼109 G from the spin-up rate of M82 X-2. As
more pulsating ULXs were found, all with high spin-ups, a
model was formed that incorporated the period, spin-up, and
luminosity to predict the magnetic field strength and intensity of
the beaming (King et al. 2017; King & Lasota 2019, 2020,
hereafter referred to as the KLK model). Besides very small
values of the beaming factor b= L/Liso—implying a high degree
of beaming—the model also predicts dipole magnetic fields in
the range of 109–1013 G, with most values falling between 1010

and 1011 G.
In order to model a neutron star accreting at super-Eddington

accretion rates, it is necessary to run general-relativistic
radiative magnetohydrodynamic (GRRMHD) simulations. As
of writing this Letter, there is only one such global simulation
(Takahashi & Ohsuga 2017) that includes a stellar magnetic
field, and two that do not (Abarca et al. 2018; Takahashi et al.
2018).
The simulation discussed in Takahashi & Ohsuga (2017),

while an important result, has some shortcomings. It is unclear
how the highly magnetized regions are treated, or what effects
the numerical density floor or background atmosphere have on
the emerging radiation. The simulation is run for a rather short
duration, not allowing adequate time for the outflows to reach a
steady state. To overcome these issues, all of which could
potentially contaminate measurements of the luminosity and
flux distribution, we introduce a scheme that captures the
highly magnetized regions of the simulation more realistically.
Such a scheme was introduced by Parfrey & Tchekhovskoy
(2017) and we have implemented it in the GRRMHD code
Koral. We ensure the numerical floors do not affect the
emerging radiation and run the simulation for a much longer
duration.
We wish to investigate the degree to which the radiation

produced by an accreting magnetized neutron star is beamed.
Small values of b and lower neutron-star magnetic fields would
support the KLK model, while values of b near unity would
indicate that some other configuration must be responsible for
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such high observed luminosities. Even if we do find the
radiation to be highly beamed, a direct comparison to the KLK
model would not be very informative considering the
requirement that the magnetospheric and spherization radii be
quite close to each other.

A further caveat to consider is that we have aligned the
magnetic dipole axis with the disk axis, so even if we included
rotation, we would not expect to produce pulsations. However,
the population of non-pulsed ULXs is much larger than the
population of pulsed ULXs, and there is no reason to believe
that some of these also may not be powered by neutron stars.

At the accretion rates we are considering, it has been
predicted that the flow to the magnetosphere forms an optically
thick “accretion curtain” shielding the stellar surface outside
the polar regions (Mushtukov et al. 2017). For a rotating,
misaligned dipole, this would produce smooth pulse profiles as
the radiation is only able to escape through the thin funnel
region along the magnetic poles and this may significantly
lower the pulse fraction through multiple scatterings off the
funnel wall, making a strong pulsed fraction inconsistent with
strong beaming (Mushtukov et al. 2021). A fully 3D simulation
with a misaligned dipole would be necessary to adequately
address this possible inconsistency.

In Section 2 we describe the numerical methods and the
simulation setup. In Section 3 we describe the results of the
simulation. In Section 4 we discuss the effects of beaming and
the expected observed luminosity of the system, and in
Section 5 we summarize the results and our conclusions.

2. Numerical Methods

We use the code Koral (Saḑowski et al. 2013, 2015), which
solves the conservation equations of GRRMHD on a static grid
in a fixed metric, gμν. The evolution equations are given by

( ) ( )r =m
mu 0, 1

( ) =m
m
n nT G , 2

( ) = -m
m
n nR G , 3

( ) =m
mnF 0. 4*

The equations correspond to conservation of mass, conserva-
tion of total energy-momentum with coupling of matter and
radiation provided by the radiation four-force, Gν, (Mihalas &
Mihalas 1984), and the source-free Maxwellʼs equations.
Conservation of mass depends on ρ, the baryon rest-mass
density, and uμ, the gas four-velocity. The stress-energy tensor
for a magnetized gas is given by

( ) ( )
( )

r d= + + + + + -m
n

m
n n

m m
nT p u b u u p b b b2 ,

5
int

2 2

which makes use of uint, the gas internal energy, p= (γ− 1)uint,
the gas pressure (where γ= 5/3 is the adiabatic index), and the
magnetic field four-vector, =m

n
mnb u F1

2
* .

Written in terms of the Hodge dual of the Faraday tensor,
mnF* , the source-free Maxwell equations correspond to the

induction equation (spatial components), and the divergence-free
condition of the magnetic field (t component), both of which are
evolved using the flux constrained transport algorithm (Tóth
2000).

Equation (3) only evolves the Rtμ components of the radiation
stress-energy tensor using Gν, which includes opacities defined

by electron scattering, Comptonization, and bremsstrahlung
absorption. The spatial components, Rij, are computed using the
M1 closure scheme (Mihalas & Mihalas 1984; Saḑowski et al.
2013), which makes the approximation that there exists a frame
with four-velocity muR in which the radiation can be considered to
be isotropic. In that frame, the radiation has energy density Ē .
We can then write the radiation tensor in the lab frame as

¯ ¯ ( )= +mn m n mnR Eu u g E
4

3

1

3
, 6R R

which can be inverted to give the radiation primitive variables
Ē and muR in terms of R tμ.
Since we study a nonrotating star3 it is sufficient to use the

Schwarzschild metric with a coordinate system that is logarithmic
in radius and stretches from r= 5 rg to r= 1000 rg, where
rg=GMc−2 is the gravitational radius defined by the neutron-star
mass M. For the purposes of this calculation we take the radius of
the star to be R= 5rg and we specify4 its mass at the canonical
value 1.4 Me. While modern studies with the NICER instrument
indicate R≈ 6.4 rg at M≈ 1.3Me (Riley et al. 2019), the adopted
value of M or R does not affect our results qualitatively. In this
work the geometry of accretion is controlled by the magneto-
sphere.5 Unless otherwise specified, we adopt units where
G= c= 1. Our simulation is run in 2D axisymmetry with
resolution in r and θ corresponding to [512, 510] cells.
We initialize the simulation with an equilibrium torus (Penna

et al. 2013) threaded by a single loop of magnetic field that
feeds gas to the star at a rate of ∼ M20 Edd. The initial maximum
β= (pgas+ prad)/pmag (the ratio of gas plus radiation to
magnetic pressures) in the torus is equal to 10. We initialize
a stellar dipole field with a maximum field strength on the
stellar surface of 2× 1010 G using the potential given in
Wasserman & Shapiro (1983).
Outside the torus, the gas is initialized to a low-density

background. This creates a large contrast in the magnetic and rest-
mass energy densities. The ratio of these two quantities, the
magnetization, σ= b2/(2ρ), provides an indication of where the
numerical scheme should start to break down, with σ? 1 regions
being especially prone to error/instabilities. Our simulation is
initialized with a peak magnetization of σ= 104, and in order to
evolve the system we implement the method described in Parfrey
& Tchekhovskoy (2017). The basic idea of the scheme is to divide
the gas into contributions from the real general-relativistic
magnetohydrodynamic (GRRMHD) flow and from the numerical
floor that keeps σ from becoming too large. When gas is
dominated by the numerical floor, the density and internal energy
are adjusted to their background levels and the velocity parallel to
the magnetic field, as measured by the stationary observer, is
reduced. We provide some additional adjustments that improve
the scheme’s robustness in the presence of radiation. We reduce
the scattering and absorption opacities of the gas dominated by the
numerical floor, and we balance energy gain/loss from round-off
errors in the magnetic field by respectively subtracting/adding

3 The observed ULX periods of several seconds make the spin of the neutron
star negligible in our simulations, which typically run for about ∼105 GM c−3,
i.e., ∼0.7 s of physical time.
4 The results of radiative simulations do not scale with the stellar mass, which
therefore must be specified.
5 In general R/rg varies with the stellar mass, and it is only for weakly
magnetized stars (with a dipole moment about two orders of magnitude below
what we assume here) that the character of flow depends on whether R is larger
or smaller than the radius of the marginally stable orbit (Kluzniak &
Wagoner 1985).
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radiation energy during the conserved-to-primitive variable
inversion.

We also introduce a new boundary condition that attempts to
mimic the hard surface of the neutron-star crust. We treat the
gas as in Parfrey & Tchekhovskoy (2017), allowing it to fall
through the inner boundary unimpeded. Then, on a cell-by-cell
basis, we measure the flux of kinetic, thermal, and radiative
energy flowing through the boundary and return a fraction
(albedo) of that energy as outflowing radiation. In the
calculations reported in this Letter, that fraction corresponds
to 75%, but a full study of this boundary condition for different
values of the albedo is underway. An important consideration is
the actual flux of radiation that crosses the inner boundary,
which is controlled by the Riemann solver. The ghost cells are
set to reflect 75% of the inflowing energy in the ghost cells.
The HLL Riemann solver should pick a value that is roughly
halfway between these two6 fluxes and so in actuality we
expect about 12.5% of the radiation flux to escape from the
domain through the inner boundary.

We run the simulation for 80,000 tg where tg=GM c−3.
Normally, in 2D axisymmetry, the absence of a dynamo driven
by turbulence from the magnetorotational instability (MRI)
leads to decay of the magnetic field. This is remedied with the
use of a mean-field dynamo that restores the magnetic field in
the accretion disk as a model for how it would be regenerated
in 3D (Saḑowski et al. 2015).

3. Simulation Results

The field lines of the stellar dipole are deformed to wrap
around the initial torus, and so far from the star they are out of
equilibrium. As the simulation starts, the magnetic field quickly
relaxes to a stable configuration enveloping the torus while the
closed loops near the star are virtually unchanged.

The torus begins to evolve as the MRI builds up and the gas
begins to accrete. When the gas reaches the stellar magnetic
field, it forces it inward, raising the magnetic pressure until it
balances the ram pressure, at which point the gas begins to slide
along magnetic field lines, forming accretion columns. As the
gas hits the inner boundary, it is shocked and a large amount of
radiation begins to leave the base of the column perpendicu-
larly through the column’s sides. As the simulation progresses,
the accretion disk converges at progressively larger radii to its
steady-state solution, launching outflows that collimate the
radiation released in the columns and inner parts of the disk by
confining it to a funnel-like region about the polar axis.

A snapshot from the simulation at time t= 32,000 tg is
shown in the upper panel of Figure 1. The lower panel depicts a
time average from t= 40,000 tg to t= 80,000 tg. The left half of
the panel shows E , the radiation energy density in the fluid
frame, and the right half of the panel shows the gas rest-mass
density.

The magnetic field of the torus is oriented to be opposite in
direction to the dipole field when they meet, leading to
reconnection that allows gas to flow smoothly into the
accretion columns (Parfrey & Tchekhovskoy 2017). The
snapshot shows the remnant of a loop from the torus that had
just reconnected with the stellar dipole in the disk midplane,
indicated by the bold contour in the upper panel.

The flow is quite turbulent. The snapshot captures a moment
of lower luminosity before a high-density parcel of gas below
the disk midplane enters the column and collides with the
stellar surface, raising the luminosity significantly. The long-
term effect of successive gas parcels hitting the surface and
becoming shocked contributes to the steep radial gradient of
radiation energy and gas density at the base of the column. This
effect is also apparent from the difference in radiation energies
in the polar region between the two panels. It is also evident
that the polar region is largely devoid of gas. The gas is
confined by the magnetic field to midlatitudes, strongly
contrasting to what was observed in Abarca et al. (2018),
where the absence of a stellar magnetic field allowed
outflowing gas to fill the whole domain.
We can study the outflowing gas in more detail by

considering the azimuthally integrated radial fluxes of gas
and radiation, which are shown in Figure 2. The left half of the
panel is the quantity ( )p qr F2 sin r in units of [ -L rgEdd

1], where
=F Rr r

t is the radial component of the radiation flux (or
momentum depending on the factor of c). One can then
integrate by eye over r dθ to estimate the luminosity. In a
similar way, the gas momentum is integrated into the poloidal
plane giving ( )p q rr u2 sin r in units of [ - -L r cgEdd

1 2].
Three contours are included. The solid green line shows the

photosphere defined by τr= 1, where τr is the scattering optical
depth found by integrating from the outer boundary of the

Figure 1. Snapshot (upper) and time-averaged (lower) plots of the radiation
energy density (left), and the gas rest-mass density (right). We plot equispaced
contours of Af, the f component of the vector potential, which correspond to
poloidal field lines due to the axisymmetric nature of the problem. A bold
contour shows the remnant of a torus loop that had just reconnected with the
neutron star’s dipole.

6 The left-biased flux is determined by the ghost cells and the right-biased flux
by the domain.
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simulation to radius r. We can then assume that all of the
outflowing radiation above this surface will reach the observer
giving us a lower limit on the luminosity if we integrate the flux
over the θ coordinate. By definition we can see very little gas
above this surface, and all of the radiation that is between this
line and the axis is expected to reach infinity. The polar region
is completely dominated by a nearly radial flow of radiation
escaping the inner region of the simulation. Surprisingly, a
significant fraction of outgoing radiation is excluded by the
τr= 1 surface. There is very little momentum density in
the corresponding region so one would expect the gas to be
optically thin, and for this to be reflected in the τr= 1 contour.
However, the outflows do not flow exactly radially, nor in
perfectly straight lines, so the gas at larger radii is obscuring the
inner region. The flux at low radii, however, does not know
about this gas and freely streams over a larger range of angles
than indicated by the τr= 1 surface. At some point (in our
simulation between radius 300 and 400 rg) the radiation scatters
off the outflowing gas, becoming more confined. This is
precisely the radiation-collimation effect that should lead to
large apparent luminosities.

Another consideration is the small density gradient in the
radial direction. This leads to the location of the photosphere
being quite sensitive to small variations in the density and the
precise value of the scattering cross section. The draconian
approach of including 100% of the flux on one side of the
contour and excluding 100% of the flux below the contour may
not be appropriate for estimating the total luminosity, as the
photons located immediately above and below the contour have
almost the same probability of reaching the observer.

We can also measure the optical depth by integrating along θ
from the axis. This surface, τθ= 1, is shown in Figure 2 by the
densely dashed pink and black line. Because τθ is more useful
for measuring the amount of radiation that leaves the accretion
columns (since radiation escapes the column along the θ
direction), it might provide a more accurate representation of
the radiation that can reach the observer. The gradient of
density along θ is much stronger than in the radial direction so
there is much less uncertainty in the location of the photosphere
in this direction. We can see that τθ is a good indicator for

separating the very strong radiation flow near the axis from the
less intense radiation flow in the gas outflows. Also, τθ is not
affected by the geometry of the outflow at large radii; however,
the question remains what happens to the radiation at large
radii, or the radiation that scatters off of the side of the outflow
near the accretion column?
The last curve, shown in loosely dashed teal and black

represents the surface where the relativistic Bernoulli para-
meter,

( )r
r

= -
+ +

Be
T R u

u
, 7

t
t

t
t

t

t

is equal to zero. This surface approximately splits the domain
into energetically bound and unbound regions. Outflowing gas
along this contour would be able to reach infinity with zero
specific energy if it absorbed all of the radiative energy at its
location. In reality, at some point the outflow should become
diffuse enough that the radiation escapes. We can therefore use
the zero-Bernoulli surface to define a region above which we
can integrate the radiation flux to get an upper limit on the
luminosity. If the gas rapidly becomes optically thin, the
luminosity will be close to the integral of flux above this
surface. It is more likely that the radiation deposits some of its
momentum into the outflowing gas, lowering the luminosity.
One could argue that it is also possible for the gas to cool
contributing even more radiation to the total and exceeding this
upper limit. However, we can verify that, at least in the
simulation domain at radii larger than∼70 rg, the outflows
almost exclusively absorb radiation.7

If we perform the integrals of radiative flux over spherical
shells bounded by these three surfaces, we can plot the
luminosity for each measure as a function of radius as shown in
Figure 3. In addition to the three luminosities described above,
for reference we also plot the total luminosity as integrated over
the entire domain. Formally we can define the luminosities as

Figure 2. Radial radiative flux, =F Rr
t
r (left), and gas momentum density, ρu r (right), integrated into the poloidal plane. Overplotted in solid green is the photosphere

at electron scattering depth unity, as measured radially, τr = 1. The dashed pink and black line shows the photosphere as measured along the θ direction from the axis.
The dashed teal and black line shows the zero-Bernoulli surface, Be = 0.

7 Radiation transfers energy from the hot inner region to the cooler
adiabatically expanding gas in the outer regions.
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follows:

( )ò q= -
t <

L R g d , 8r
r

t
1r

( )ò q= -q
t <q

L R g d , 9r
t

1

( )ò q= -
>

L R g d , 10r
tBe

Be 0

( )ò q= -
p

L R g d . 11r
ttot

0

In steady state, the luminosity of a central radiation source
would be constant (apart from redshift factors) with radius if
radiative energy were conserved. However, the presence of gas,
which can absorb and emit radiation, can change the shape of
the luminosity curve even in steady state. Additionally, because
optical depth is defined along coordinates, and not along the
path of photons, it is possible to arbitrarily add or subtract to
the luminosity curve if the average path of the photons is more
complex, such as near the accretion columns.

We have run the simulation for a sufficiently long duration
and taken a sufficiently long time average that the accretion
disk should have reached a steady state out to radius 60–70 rg
and most of the turbulence should average away. The disk
converges outward as the simulation runtime approaches the
viscous time at a particular radius. The outflows, which have
much larger velocity, converge much faster. A weak conv-
ergence condition for the outflow can be given by r/v r< tavg,
where v r= u r/u t is the coordinate velocity, and tavg is the time
period over which the simulation data were averaged. Our data
are averaged over a long enough period of time that nearly the
entirety of the gas outflow is able to satisfy the convergence
condition. However, one must also take into account the origin
of the outflow. A large portion of the outflowing gas originates
from regions of the disk that have not yet converged, and as we
explain later, this introduces uncertainty into some measures of
the luminosity, especially at larger radii.

Despite all of this, Lr, shown as the solid blue line, is
somewhat flat out to about radius∼ 500 rg and so we believe
that Lr≈ 2.5 LEdd is a good measure of the total radiative output
of the simulation or at least a suitable lower limit. The steady
rise up to radius 80 rg is probably due to radiation being
emitted in and emerging from the outflows. Beyond, it is hard
to determine whether the fluctuations are geometrical, or due to
the unconverged nature of the simulation at large radii.
LBe, Ltot, and Lθ, all show negative values near the star. This

is related to the well-understood phenomenon of photon
trapping in super-Eddington accretion disks (Ohsuga et al.
2002; Saḑowski & Narayan 2016). Most of the radiation is
advected inward by the optically thick gas before it can diffuse
out of the disk. In our neutron-star case some of this energy is
released at the surface. It would appear the photon-trapping
effect is so strong that even with an albedo of 75%, inflowing
radiation in the accretion columns dominates energy transport
near the stellar surface. Ltot is also largely dominated by the
advection of photons in the accretion columns and continues to
decrease all the way to the surface.
Both Lr and Lθ rise steeply over the first rg or so above the star

due to the radiation shock. Lθ continues to rise as the accretion
columns and accretion disk add to the luminosity. Lθ includes
radiation released from the outflow below radius∼ 70 rg. At
larger radii Gt switches sign, and the radiation contributing to Lθ
passes through enough gas to deposit almost half of its
momentum into the outflow lowering the luminosity to a local
minimum of∼3.75LEdd. The location of the τθ= 1 surface is
unaffected by the outer boundary so the steady rise in Lθ above
r∼ 200 rg is likely due to the gas becoming steadily thinner,
allowing more of the flux to contribute to the luminosity.
A similar effect is seen in LBe and Ltot. They rise sharply

with increasing r up to r∼ 60 rg, as there is a significant
amount of radiation advected with the outflow, and then drop
as momentum starts to be transferred to the gas. LBe is
integrated over regions of the outflow that originate from parts
of the disk that have not yet converged, especially beyond
radius r∼ 100 rg, which increases the uncertainty in its value,
especially at larger radii. LBe largely follows Ltot, although this
appears to be largely a coincidence and is due to the equal
amounts of radiation flowing inward and outward over the
region where Be< 0.

4. Beamed Emission

The most important quantity, which is the signature of all
ULXs, is a large apparent isotropic luminosity, that is,
Liso= 4πd2F, measured from an observed flux, F, emitted by an
object at a distance, d, away from the observer (neglecting
cosmological effects). While it is impossible to predict Liso reliably
from the simulation data without sophisticated radiation post-
processing, we can estimate it at a few locations in the simulation
and see how it changes with radius. Plotted in the left panel of
Figure 4 is Liso as a function of viewing angle for different radii.
The figure is presented in polar coordinates to emphasize the
beaming pattern. One can immediately see that the vast majority of
the flux is confined within 20° of the axis. The peak Liso lies along
the axis, and while it decays with radius (from the continuous
green line through the dashed lines to the dotted one), it appears to
be converging to a large value well above 100 LEdd that is about
2× 1040 erg s−1 for a canonical 1.4Me neutron star.
The apparent luminosity is clearly bright enough for the

neutron star to qualify as a ULX. To compare the measured

Figure 3. Four measures of the luminosity are plotted as a function of radius. In
solid blue is Lr, loosely dotted orange shows Lθ, densely dotted purple is LBe,
and dashed pink is Ltot.
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degree of beaming with the KLK model, we need to choose a
quantity to function as the total luminosity. We consider Lr and
LBe as lower and upper limits, respectively (although we are
confident that the true luminosity is much closer to Lr). These
also correspond to lower and upper limits for the beaming
factor b= L/Liso.

Near the axis, Liso/LBe∼ 25, and is more or less constant
with radius. This already exceeds 1/b as computed from the
KLK model (King et al. 2017; King & Lasota 2019, 2020) for
all the sources they included. If we instead consider Liso/Lr,
then 1/b shoots up to above 80. It falls at larger radii, to
around 60.8

Note that the beaming factor is a function of the angle. In
general, 1/b is proportional to flux, which is a function of θ,
and lower viewing angles will tend to display more extreme
beaming (corresponding to smaller values of b).

An important consideration is the effect that axisymmetry
has on our simulation. Saḑowski & Narayan (2016) compared a
2D axisymmetric accretion disk simulation onto a black hole to
an identical simulation in 3D. The authors found that both of
the simulations were remarkably similar, although the authors
did notice that the degree of beaming was overestimated in the
2D simulation by a factor of about 2. We expect a similar
degree of exaggerated beaming because the mechanism that
collimates radiation is the same in both works. This could
lower our estimated apparent isotropic flux to be around

1040 erg s−1, which is still well in the realm of observed ULX
luminosities.
Regardless of the measure used to compute the total

luminosity, we have shown that a low-magnetic-field neutron
star can produce emission that is sufficiently beamed to
produce a ULX. The closest theoretical model to our
simulation, the KLK model, also predicts large amounts of
beaming, although not as extreme as we observe. The two
models need not completely agree since they differ in several
ways. The disk in our simulation has a very large spherization
radius when compared to the magnetospheric radius. The KLK
model requires that these two radii be much closer. This would
substantially affect the outflows, as they are only launched
below rsph and above rM. Including the spherization radius in
the domain is challenging, first, because it takes a long time for
the simulation to converge to such large radii, and second,
because beyond rsph, the disk should be similar to a thin disk,
and thin disks are notoriously difficult to simulate.
One issue, although one that we already have plans to

remedy, is the limitations of Koral when simulating the
radiation field. Koral is a gray code that uses the M1 closure
scheme to transport radiation.M1 works well for large extended
sources, but when radiation originating from two or more
distinct locations collide, the beams interact. For us, this is
most problematic in the region directly outside of the accretion
columns. The radiation flows toward the axis and is then
directed upward due to the polar boundary condition, which is
reflective. In reality, we expect the beams from the accretion
columns to scatter off of the opposite wall formed by the gas
outflows. After enough scatterings, the radiation should be
collimated and largely moving along the axis. From Figure 1
we can see that the radiation already appears collimated as soon
as it leaves the accretion column.
To get a more accurate representation of the radiation field,

we need to go beyond the M1 scheme. HEROIC (Narayan et al.
2016) is a postprocessing radiative transfer code that could be
used to recompute the radiation field and spectrum for an
observer at infinity as a function of viewing angle. While such
calculations are out of the scope of this Letter, we plan to apply
HEROIC postprocessing analysis to the rest of our simulations
in a future publication.

5. Summary and Conclusions

We performed a 2D axisymmetric GRRMHD simulation of
accretion onto a neutron star with a 2× 1010 G dipolar
magnetic field. The combination of the hard surface and
confinement of the gas into accretion columns by the stellar
magnetic field near the stellar surface allows the flow to release
radiative energy at a rate of several times the Eddington limit.
The fraction of this energy that is able to reach the observer, as
opposed to being absorbed by the outflows, is difficult to
calculate, but a lower limit of the observable luminosity should
correspond to about 2.5 LEdd. The radiation easily escapes
into the polar region, which is largely devoid of gas due to a
combination of the magnetic field and rotation of the
outflowing gas that collimates the radiation flow. While a
more precise calculation of the radiation field is required due to
the limitations of the simulation, our results show that this
escaping radiation will be highly beamed. The apparent
isotropic luminosity of the source observed pole-on should be
on the order of 100 LEdd. This is encouraging if we wish to

Figure 4. Inferred isotropic flux (left) and beaming pattern (right) as a function
of viewing angle, measured from the pole. For the left panel, the radial
coordinate corresponds to the isotropic luminosity, Liso = 4πr2Fr. For the right
panel, the radial coordinate measures beaming, 1/b, i.e., the inferred isotropic
luminosity as a function of angle divided by the total luminosity. The left side
of the right panel is a lower limit for 1/b obtained with the total luminosity,
LBe. The right side of the right panel assumes the total luminosity is Lr, which
provides an upper limit on 1/b. All the quantities are measured at specific radii
in the simulation, as indicated by the legend.

8 As r increases τr feels the effect of a finite outer boundary, so it is possible
that the computed value of Lr may be slightly overestimated, leading to a
slightly underestimated 1/b at large radii.
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interpret the accreting system as a model of a neutron-star-
powered ULX.

When compared to the KLK model (King et al. 2017; King &
Lasota 2019, 2020), we find that the intensity of the beaming is
larger, although we have reason to believe that postprocessing
would show a less intensely beamed distribution of radiation at
infinity. Furthermore, our simulation does not model the same
system as considered by KLK. The distance between the Alfvén
radius and spherization radius is large. We hope to produce
simulations in future studies that can reproduce additional
observable features of ULXs and that can provide more
information about the nature of the magnetic field in pulsating
and nonpulsating ULXs.
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