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Abstract 
 

Let G be an arbitrary simple and connected graph, with the vertex set V(G) and edge set E(G). The first 

Zagreb index of a graph G is defined as ( )1M G = 2

( )
v

v V G

d
∈
∑ , where du and dv are the degrees of u and v, 

respectively. An alternative expression for ( )1M G  is ( )
( )

u v
e uv E G

d d
= ∈

+∑ . And similarly, the Second 

Zagreb index ( )2M G = ( )
( )

u v
e uv E G

d d
= ∈

×∑ . In this paper, we consider a multiplicative version of 

( )1M G and ( )2M G  and define them as ( )1PM G = ( )
( )e u E G

v v
v

d d
= ∈

+∏  and 
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( )2PM G = ( )
( )e u E G

v v
v

d d
= ∈

×∏ , respectively. And then we compute these Multiple Zagreb indices of V-

Phenylenic Nanotubes VPHX[p,q] and V-Phenylenic Nanotorus VPHY[p,q] (∀p,q∈ℕ-{1}). Furthermore, 
we present the redefined Zagreb indices of V-Phenylenic Nanotubes VPHX[p,q] and V-Phenylenic 
Nanotorus VPHY[p,q] (∀p,q∈ℕ-{1}). 

 

Keywords: Topological index; Zagreb index; Multiple Zagreb indices; V-Phenylenic Nanotubes;                            
V-Phenylenic Nanotorus. 

 

1 Introduction  
 
Let G=(V,E) be a finite graph without loops, multiple, or directed edges. In chemical graphs, a molecular 
graph is a simple graph such that the vertices of the graph can correspond to the atoms of molecules while 
the edges represent chemical bonds (V(G) and E(G) are the vertex and edge set of G respectively). For a 
vertex v∈V(G), the degree dv is the number of vertices of G adjacent to v. A general reference for the 
notation in graph theory is [1-4].   
 
In theoretical Chemistry, molecular structure descriptors, the topological indices are used for modeling 
physico-chemical, toxicologic, biological and other properties of chemical compounds. Many of the 
topological indices of current researches in mathematical chemistry are defined in terms of vertex degrees of 
the molecular graph. 
 
The first Zagreb index of a graph G is among the oldest graph invariant which was defined in 1972 by 
Gutman and Trinajstić [5] as:  
 

( )1M G = 2

( )
v

v V G

d
∈
∑

 

 

where du and dv are the degrees of u and v, respectively. An alternative expression for ( )1M G  

is ( )
( )

u v
e uv E G

d d
= ∈

+∑ . Also the Second Zagreb index 

 

( )2M G = ( )
( )

u v
e uv E G

d d
= ∈

×∑ .
 

 
The multiplicative version of these Zagreb indices of a graph G (based on the degree of vertices of G) has 
been introduced recently by Gutman [6], Ghorbani and his co-authors [7] as follows: 
 

( )1PM G = ( )
( )e u E G

v v
v

d d
= ∈

+∏ , 

 

( )2PM G = ( )
( )e u E G

v v
v

d d
= ∈

×∏ . 

 
We encourage the readers to refer to [1,5-26] for historical backgrounds, computational techniques, and 
mathematical properties of these topological Zagreb indices.  
 
The following definitions on redefined Zagreb indices are borrowed from [27]: 
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•  The first redefined Zagreb index of a graph G is defined by 
 

1Re ( )ZG G =
( )

u v

uv E G u v

d d

d d∈

+
×∑ . 

 
•  The second redefined Zagreb index of a graph G is defined by 
 

2Re ( )ZG G =
( )

u v

uv E G u v

d d

d d∈

×
+∑ . 

 
•  The third redefined Zagreb index of a graph G is defined by 
 

3Re ( )ZG G =
( )

( )( )u v u v
uv E G

d d d d
∈

× +∑ . 

 
Although there have been several advances in Zagreb index of molecular graphs, the study of multiplicative 
Zagreb indices and redefined Zagreb indices of special chemical structures have been largely limited. In 
addition, as widespread and critical chemical structures, V-Phenylenic Nanotubes, and V-Phenylenic 
Nanotorus are widely used in medical science and pharmaceutical field. For these reasons, we have attracted 
tremendous academic and industrial interests to research the multiplicative Zagreb indices and redefined 
Zagreb indices of these molecular structures from a mathematical point of view. 
 
In this paper, we focus on the structure of V-Phenylenic Nanotubes VPHX[p,q] and V-Phenylenic Nanotorus 
VPHY[p,q] (∀p,q∈ℕ-{1}) and compute their multiplicative Zagreb indices. As a supplement, three classes of 
redefined Zagreb indices of V-Phenylenic Nanotubes VPHX[p,q] and V-Phenylenic Nanotorus VPHY[p,q] 
(∀p,q∈ℕ-{1}) are determined.  
 

2 Main Results and Proofs 
 
The novel Phenylenic and Naphthylenic lattices proposed can be constructed from a square net embedded on 
the toroidal surface. Following Diudea [28], we denote V-Phenylenic Nanotubes and V-Phenylenic 
Nanotorus as G=VPHX[p,q] and H=VPHY [p,q], respectively. Molecular graphs V-Phenylenic Nanotubes 
VPHX[p,q] and V-Phenylenic Nanotorus VPHY[p,q] belong to two different families of Nano-structures 
whose structures are made up of cycles with length four, six and eight. These molecular graphs have been 
presented in many papers which can be referred to the paper series [17,29-39]. A general representation of 
V-Phenylenic Nanotubes VPHX[p,q] and V-Phenylenic Nanotorus VPHY[p,q] are shown in Figs. 1 and 2, 
respectively. 
 
In this section, we focus on the structures of molecular graph "V-Phenylenic Nanotubes and Nanotori" and 
count their First Multiple Zagreb and Second Multiple Zagreb indices. 
 
Theorem 1. Let G be V-Phenylenic Nanotubes VPHX[p,q] (∀p,q∈ℕ-{1}). Then: 
 

The First Multiple Zagreb index of G is equal to  
 

PM1(VPHX[p,q])= ( ) ( )( )4 9 5
5 6

p q p−×   

 
The Second Multiple Zagreb index of G is equal to  

 

PM2(VPHX[p,q])= ( ) ( )( )4 18 6
2 3

p q p−×   
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Proof. Let G be V-Phenylenic Nanotubes VPHX[p,q], where p and q are the number of hexagon in the first 
row and column in this Nanotubes. In general case of this Nanotubes, there are 6pq vertices/atoms and 9pq-p 
edges/bonds, see Fig. 1. 
 
From the structure of V-Phenylenic Nanotubes VPHX[p,q], it is easy to see that there are p+p vertices of G 
with degree 2 and alternatively 6pq-2p vertices of G with degree three. In other words, we have two 
partitions of the vertex set V(VPHX[p,q]) as follows: 
 

V2={v∈V(VPHX[p,q])| dv=2} → |V2|=2p 
 
V3={v∈V(VPHX[p,q])| dv=3} → |V3|=2p(3q-1) 

 
On the other hand, from the structure of G=VPHX[p,q], we have two partitions of the edge set of Nanotubes 

G ( 5E and 6E ) as follows: 

 
E5=E6

*={e=uv∈E(VPHX[p,q])| du=3 &dv=2} → |E5|=|E6
* |=2p+2p, 

 
E6=E9

*={e=uv∈E(VPHX[p,q])| du=dv=3} → |E6|=|E9
* |=9pq-5p. 

 
Therefore, the first Multiple Zagreb index of V-Phenylenic Nanotubes G=VPHX[p,q] is equal to 
 

PM1(VPHX[p,q])= ( )
( )

 
uv G

v v
E

d d
∈

+∏ = ( ) ( )
5 6

  
uv E uv

v v v
E

vd d d d
∈ ∈

×+ +∏ ∏ = ( ) ( )( )4 9 5
5 6

p q p−× . 

 
And the second Multiple Zagreb index of V-Phenylenic Nanotubes G=VPHX[p,q] is equal to 
 

PM2(VPHX[p,q])= ( )
( )

 
uv G

v v
E

d d
∈

×∏ = ( ) ( )
* *
6 9

  v v
u E v E

v
v u

vd d d d
∈ ∈

×× ×∏ ∏
 

 

= ( ) ( )( )4 9 5
6 9

p q p−× = ( ) ( )( )4 18 6
2 3

p q p−× . 

 
And these completed the proof of Theorem 1. ■  
 

 
 

Fig. 1. A general case of V-Phenylenic Nanotubes G=VPHX[p,q], ∀∀∀∀p,q∈∈∈∈ℕℕℕℕ-{1} 
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Theorem 2. Let H be V-Phenylenic Nanotorus VPHY[p,q] (∀p,q∈ℕ-{1}). Then: 
 

The First Multiple Zagreb index of G is equal to  
 

PM1(VPHY[p,q])= 96 pq . 
 

The Second Multiple Zagreb index of G is equal to  
 

PM1(VPHY[p,q])= 183 pq . 
 

Proof. Consider Nanotorus H=VPHY[p,q], where p and q are the number of hexagon in the first row and 
column in this Nanotorus.  
 
Now by using the structure of VPHY[p,q] in Fig. 2, we can see that the number of vertices and edges in this 
Nanotorus is equal to |V(VPHX[p,q])|=6pq and |V(VPHX[p,q])|=9pq, respectively (∀p,q∈ℕ-{1}). Since in 
H=VPHY[p,q], |V2|=0 and |V3|=6pq. 
 
Thus, the first and second Multiple Zagreb indices of V-Phenylenic Nanotorus H=VPHY[p,q] is equal to 
 

PM1(VPHY[p,q])= ( )
( )

 
uv H

v v
E

d d
∈

+∏ = ( )
6

 
uv

v v
E

d d
∈

+∏ = 96 pq . 

 
and  
 

PM2(VPHY[p,q])= ( )
( )

 
uv H

v v
E

d d
∈

×∏ = ( )
*
9

 
u

v
E

v
v

d d
∈

×∏ = 183 pq . 

 

 
 

Fig. 2. A general case of V-Phenylenic Nanotorus H=VPHY[p,q] (∀∀∀∀p,q∈∈∈∈ℕℕℕℕ-{1}) 
 

3 Additional Findings 
 
In this section, as a supplement conclusion, we state the first, second and third redefined Zagreb indices of 
V-Phenylenic Nanotubes VPHX[p,q] and V-Phenylenic Nanotorus VPHY[p,q] (p,q∈ℕ-{1}). The techniques 
to prove Theorem 3 and Theorem 4 are similar to what we stated in Theorem 1 and Theorem 2. Hence, we 
skip the detail proofs here. 
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Theorem 3. Let G be V-Phenylenic Nanotubes VPHX[p,q] (∀p,q∈ℕ-{1}). Then: 
 

ReZG1(VPHX[p,q])=6pq, 
 

ReZG2(VPHX[p,q])=
27 27

2 10

pq p− , 

 
ReZG3(VPHX[p,q])= 486 150pq p− . 

 
Theorem 4. Let H be V-Phenylenic Nanotorus VPHY[p,q] (∀p,q∈ℕ-{1}). Then: 
 

ReZG1(VPHY[p,q])=6pq , 
 

ReZG2(VPHY[p,q])=
27

2
pq , 

 
ReZG3(VPHY[p,q])=486pq . 

 

4 Conclusion 
 
The multiplicative Zagreb indices and redefined Zagreb indices that relied on the graphical structure of the 
alkanes are defined and employed to model both the melting point and boiling point of the molecules. In this 
report, we mainly obtained the multiplicative Zagreb indices of V-Phenylenic Nanotubes VPHX[p,q] and                
V-Phenylenic Nanotorus VPHY[p,q] (∀p,q∈ℕ-{1}). And then, the redefined Zagreb indices of these 
structures are also considered. The promising prospects of the application for the chemical and pharmacy 
engineering will be illustrated in the theoretical conclusion that is obtained in this paper. 
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