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Abstract
Bearings are a crucial component of wind turbines. The acoustic emission (AE) technique offers
the advantage of earlier detection of defects and failures of bearings in comparison to traditional
vibration techniques. Parameter-based analysis is the most widely used approach to interpret AE
waveforms, partly due to the challenges arising in the processing of large amounts of streaming
data. In this work, the AE technique is applied to monitor a run-to-failure process of a roller
bearing, and it is found that the use of multiple known parameters, such as the root mean square,
skewness, crest factor, impulse factor etc, fails to characterise the evolution of the acquired AE
signals, thus highlighting the long-standing necessity and significance of developing new AE
indicators that are more adequate to detect the failure of rotating machines. We propose a hybrid
parameter—the information entropy penalty factor (IEPF)—which uses the advantages of the
entropy theory and deep learning methods. The effectiveness of the proposed method has been
investigated and demonstrated for roller bearing contact fatigue experiments, and the results
show that IEPF can timely and accurately detect the incipient sub-surface faults.

Keywords: sub-surface fault detection, bearings, acoustic emission signal, parameter analysis,
energy entropy
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1. Introduction

Condition monitoring (CM) of rotating machines has been a
hot topic for decades.Wind turbines are rotating machines that
have evolved to become pivotal components for the genera-
tion of green energy. Wind turbines are usually installed in
extreme and harsh environments and are prone to a high fail-
ure rate. Bearings are essential and highly demanding com-
ponents of wind turbines. Faults in the bearings can lead to
critical failures, breakdowns and consequent losses associated
with the downtime of wind turbines. Therefore, CM and timely
and accurate fault diagnosis offers substantial benefits to oper-
ating equipment with rolling element bearings by identify-
ing incipient damage at as early stage as possible before the
faults evolve to a critical stage. This is especially important
for machines, where a fault can cause irrecoverable damage
to the environment, and not least to avoid losses of human
life or health.

Multiple sensing techniques have been employed in bear-
ing CM systems used in industrial settings in general and for
wind turbine CM in particular. Monitoring and trending the
temperature of a bearing is a simple and cost-effective method
to identify a bearing condition. However, in most applica-
tions, the temperature measurements are not sensitive enough
to detect an early stage of fault development in a roller bear-
ing. Instead, vibration analysis has become the most wide-
spread and market-leading technology due to its simplicity,
robustness and multiple uses for custom-built solutions. Vari-
ous acquisition and analysis tools have been established and
proven effective for vibration data. However, the vibration sig-
nals induced by tiny defects at the early stage of their devel-
opment can be easily masked by the uncontrolled mechanical
disturbances from the rotating machine. Moreover, the vibra-
tion acceleration signals can go undetected in heavy or slowly
rotating structures until the fault increases significantly to a
large (detectable) scale, by which stage it is often too late
for preventive/corrective maintenance and is close to a cata-
strophic failure. As opposed to vibrations, acoustic emissions
(AEs) reflecting the dynamics of the sources evolving under
load can be generated even by microscopic flaws, such as
breaks of hard non-metallic inclusions, incipient cracks, etc
[1]. Moreover, the AE signal tends to increase with the grow-
ing scale of the sources. Therefore, the potential of the AE
technique for early fault detection enjoys growing recognition
in the industrial domain. AE methods have become an import-
ant companion of reliablemonitoring systemswhen the impact
of wear and friction of rotating components is of concern.
AE is commonly defined as a phenomenon whereby transi-
ent elastic waves are spontaneously emitted by the rapid stress
relaxation within localised sources in material under load.
Plastic deformation and fracture associatedwith the nucleation
and growth of cracks represent the primary mechanisms of the
sources releasing the elastic strain energy associated with AE
transients [2]. In contrast with the vibration signal, the sources
generating AE signals are characterised by a much wider fre-
quency range (100 kHz and 1 MHz) [3], which does not
overlap significantly with low-frequency mechanical vibra-
tion signals caused by imbalance or misalignment of machine

components [4, 5]. A great deal of evidence has been accumu-
lated, suggesting that AE parameters can reveal the faults in
rotating equipment before they show up in the vibration accel-
eration range. Since the early work by Yoshioka et al [6], these
results have been investigated and confirmed in abundant lit-
erature over the last 30 years; see [2, 7, 8] for examples.

With the advent of artificial intelligence, machine learning
methods have become more and more extensively applied in
the field of fault diagnosis. Deep learning (DL) technology is
the most prominent branch of machine learning (ML) method-
ology, and refers explicitly to artificial neural networks with
a multi-layered architecture. A number of DL architectures,
such as convolutional neural networks (CNNs) [9, 10], long
short-term memory (LSTM) [11] and autoencoder [12, 13],
have been applied in the CM field and demonstrated outstand-
ing potential and practicality. However, most of the relevant
methods developed in this field are based on artificially seeded
defects and supervised circumstances. In the reality of the run-
to-failure scenario, only the data characterising the ‘healthy’
status of the object under inspection are accessible before the
emergence of the faults. Hence, the detection of defect initi-
ation is fundamentally an unsupervised task, and relevant stud-
ies are still scarce. Although some unsupervised DL archi-
tectures have been developed, e.g. the stacked autoencoder,
deep brief network and deep Boltzmann machine, they are
mainly employed with only an auxiliary role on supervised
subjects; this is generally followed by a supervisedmodel or an
extra fine-tuning procedure, as proposed in [12–15]. Aiming at
early fault detection, Lu et al proposed a DL-based architec-
ture comprising three network blocks—a basic autoencoder, a
feature extraction layer and an LSTM-based autoencoder [16].
Autoencoder is a prevalent unsupervised DL model designed
to reconstruct its own input data with the learning objective
to minimise the reconstruction error. It is reasonable that the
reconstruction error can indicate emerging faults. Since the
acquired signal may suffer serious distortion during the run-
to-failure process, it can be foreseen that autoencoder will
be unable to reconstruct the input correctly, thus leading to
increasing reconstruction errors, which serves as a fault indic-
ator; see [17, 18]. The above-cited works are based on vibra-
tion data. The application of AE has yet to be tested. In addi-
tion, one needs to bear in mind that the tolerance of the neural
network to small variations in the data may limit the effective-
ness of the entire ML-based approach. Thus, the application of
DLmodels to early fault detection in the run-to-failure process
faces serious challenges.

Up to now, the vast majority of existing studies deal with
vibration signals, while attempts to pair DL methods and the
AE technique are still limited. The parameter-based methods
still dominate the philosophy of the AE waveform analysis.
Therefore, the relevance of the involved parameters strongly
affects the performance of the detectors. The conventional
AE features extracted from AE waveforms include, but are
not limited to, AE hit parameters such as counts, duration,
rise time, counts to peak, amplitude, etc [2, 19, 20], as well
as statistical parameters/features such as root mean square
(RMS), kurtosis, crest factor, skewness, etc [5, 7, 21], defined
in the time domain. In addition, multiple signal processing
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techniques involve spectral decomposition techniques, such as
Fourier transformation [22], wavelet analysis [23–25], vari-
ational mode decomposition [26], etc, to assess the AE sig-
nal in the frequency and time–frequency domains. As is com-
monly seen in the general statistical analysis of random data,
different features characterise the AE waveforms from differ-
ent angles, thus providing a great variability in features, as well
as a range of strategies and options for their analysis, interpret-
ation and decision-making.

Raw pseudo-AE waveforms harvest a wealth of mechan-
ical interactions from rotating components, splashing oil, elec-
trical interferences and multiple other noise-like sources of
unknown origin. Therefore, the AE signal represents period-
ical patterns arising in response to the roller movement. To
characterise the periodicity and its disturbance embedded in
AE signals, a hybrid parameter that combines DL and the
information entropy (IE) theory is introduced in this work. As
a natural measure of uncertainty and chaos, IE provides new
insight into the underlying AE process. There is no standard
way to acquire IE from the AE signal. Elforjani and Mba [27]
adopted the probabilities of AE events in a given AE signal
to obtain the IE value. They showed that IE was more sensit-
ive and representative than the kurtosis and crest factor. Amiri
et al calculated the AE entropy based on counts [28]. Kahirdeh
et al proposed three similar IE models using AE counts, accu-
mulated counts or the estimated histogram of the AE signal
[29]. However, these methods commonly suffer from short-
comings associated with the AE hit (and corresponding para-
meters) definition depending heavily on the present amplitude
threshold, which introduces irrecoverable uncertainty in low-
amplitude and/or overlapping signal detection. Thus, the early
AE events are hard to identify because the AE signals caused
by incipient faults are usually of low amplitude and can be
masked by strong noise. This conclusion concurs with the lit-
erature review provided in [30]. Several studies have been pro-
posed to obtain IE from the histogram of the AE signal, as
documented in [29–31].

The main contributions of this work can be summarised as
follows. (1) To investigate the capacity of the AE technique in
sub-surface fault detection of bearings, a laboratory durability
test of a roller bearing element was carried out; roller contact
fatigue damage was initiated under controlled conditions, and
the accompanying AEwaveforms were acquired. (2) Aimed at
detecting the emerging faults timely and accurately, a health
indicator combining the IE theory and autoencoder was pro-
posed to describe the evolution of AE waveforms during the
run-to-failure process, which is referred to as the information
entropy penalty factor (IEPF). (3) The proposed parameter is
demonstrated to be more sensitive to the periodicity and dis-
turbance in the AE signal. (4) The high sampling frequency of
AE technology limits the application of DL methods; thus, a
moving variance window (MVW) was utilised to reduce the
dimensions of raw AE signals. Then, autoencoder was applied
to denoise the signal for feature augmentation.

The rest of the paper is organised as follows. Themathemat-
ical details of the proposed method are unfolded in section 2.
The test rig and the implementation details of the proposed

method are introduced in section 3, along with the experi-
mental results and discussion. Conclusions are formulated in
section 4.

2. Methodology

2.1. Basic theory of autoencoder

Since it is an unsupervised task to detect the onset of early fault
during the durability test to failure, a prevalent unsupervised
network architecture—autoencoder—is chosen for the present
work. The theoretical background of the involved neural net-
work architectures is presented in the following sub-sections.
Autoencoder aims at reconstructing its own input data. The
basic form of the autoencoder is relatively simple—it is a sym-
metrical three-layer neural network consisting of input, hidden
and output layers representing an encoder and decoder pair.
For a given dataset X, the mathematical details for encoding
and decoding are represented as follows:

Encoder : H= Activ
(
WT

e ∗X+ be
)

(1)

Decoder : X̃= Activ
(
WT

d ∗H+ bd
)

(2)

where WT
e and WT

d stand for the weights of the encoder and
decoder, respectively, and be and bd are the corresponding
biases. The encoder is regarded as a feature extractor, and
the output H is the latent representation containing the main
information of the input data. X̃ is the reconstructed data that
is decoded from the latent representation H.

To minimise the distance between X and its reconstruction
X̃, the mean square error (MSE) loss function JMSE is generally
used, which is expressed as

JMSE =
1
n

n∑
i=1

(
1
2

∥∥Xi− X̃i
∥∥)2

(3)

where n denotes the total number of samples.

2.2. Energy entropy (EE)

The EE is a measure of IE, which is based on the change in
the energy of the signal. A moving energy window (MEW)
is applied to slide over the signal to construct the probability
distribution of the energy. Given a recorded AE signal X, the
moving window is defined as

winXk,l,s = X
[
xk,sstart : x

k,s
start+ l− 1

]
(4)

xk,sstart = (k− 1)× s+ 1, k= 1,2, . . .nk (5)

wherewinXk,l,s represents the area of the signalX covered by the
moving window; k, l and s are integers specifying the moving
step, window length and moving stride, respectively; xk,sstart is
the start point of the window on the signal X. The energy of
the overlaid region is extracted at each moving step. The total
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number of moving steps is nk = [(N− l)/s] + 1, where N is
the length of the recorded AE signal. Therefore, the partial
energy of the signal Ek and its probability distribution Pk are
obtained as

Ek =
∑

x∈winXk,l,s

|x|2 (6)

Pk =
Ek∑nk
k=1Ek

. (7)

The MEW length is recommended to contain informa-
tion about at least one entire axel revolution of the rotating
machine. Thereby, it is determined by the lowest axle rota-
tion frequency and sampling frequency. With the probability
distribution, the EE is acquired based on Shannon’s entropy
formula:

H=−
nk∑
k=1

PklogbPk. (8)

The logarithmic base ‘b’ defines the unit of the measured
information. The units include bits (b= 2), nats (b= e), and
bans (b= 10) [32]. In the case of Pk = 0, the value of 0logb0
is taken to be 0; therefore, the minimum value of entropy is 0.

2.3. The proposed method

In this paper, a new fault indicator combining the EE and
reconstruction error of autoencoder is proposed, which is
referred to as IEPF. The details are presented below.

2.3.1. Feature augmentation. To capture transient changes
within the signal, an MVW, which calculates the sample vari-
ance, is applied to the original signals. For a recorded AE sig-
nal X, the procedure is formulated as follows:

XMVW =
1
l

∑
x∈win

XMVW
k,l,s

|x−µ|2 (9)

where µ is the mean of x within winXMVWk,l,s . The function of the
MVW is to capture the transient events and highlight some
important detailed information about the data. The output is a
dimensionless number thatmeasures the dispersion of the data,
and thereby, the signal is de-dimensionalised. Additionally, the
dimension of the original signal is largely reduced through this
process, which makes it easier to be processed by the neural
network.

Then, autoencoder is employed in this work to denoise and
enhance the main features of the signal. With the target of
reconstructing its own input data, autoencoder has beenwidely
used for feature extraction. However, the reconstruction error
is inevitable, which compels the network to outline the main
features of the input data and neglect some redundant noise.
To better reconstruct the input data, the CNN architecture is
used to extract detailed information. The applied autoencoder
architecture is shown in figure 1.

Figure 1. The neural network architecture used in the present work.

2.3.2. IEPF. During the run-to-failure process, the acquired
AE signal may experience serious changes with the dam-
age propagation through the test piece. It can be foreseen
that autoencoder will eventually be unable to reconstruct the
deformed signal and cause the MSE value to increase. Several
researchers proposed the reconstruction error of autoencoder
as an indicator of an early fault or anomaly in the mechanical
behaviour of the system [16–18]. However, the neural network
has a certain tolerance to waveform changes; i.e. if the discrep-
ancy between signals is not very large, autoencoder can still fit
the data with a relatively low reconstruction error. Since MSE
is inevitable, the information provided by the reconstructed
data itself is incomplete. Therefore, the EE is further adapted
to utilise the advantages of autoencoder. To implement this
coupling, equation (6) is rewritten as

Ẽk =
∑

x∈win
XMVW
k,l,s

∣∣x̃MVW+ δ
∣∣2 (10)

where x̃MVW stands for the reconstruction of data covered by
winXMVWk,l,s , and δ is the corresponding MSE value. By plug-

ging Ẽk into equation (7), a new probability distribution of the
reconstructed data is adopted as P̃k.

The maximum value of Shannon’s entropy is obtained
when all elements are identically distributed, i.e. when the

dynamic range of H is limited to
[
0,−

∑
nk

1
nk
logb

1
nk

]
. The

maximum value is greater than 0, increasing monotonically
over the range of nk. Theoretically, the greater the disturbance
of the AE signal, the smaller the value of Shannon’s entropy.
However, for the sake of convenience, one can modify the
entropy calculation in such a way that it will increase with the
variation in the AE signal as

IEPF=

nk∑
i=1

(
P̃klog2P̃k−

1
nk
log2

1
nk

)
. (11)

If the IEPF value is close to 0, it indicates that the signal
has strong periodicity and vice versa.
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2.3.3. General procedures. The general fault detection pro-
cedures are summarised as the following five steps:

Step 1: Data acquisition. AE sensors are installed on the
testing rig machine; the machine runs to failure of the rolling
bearing element, and the AE waveform is recorded periodic-
ally. The acquired AE signals at the initial stage of the experi-
ment serve as training data, and are utilised for training autoen-
coder and constructing a fault threshold. The rest of the data
are the testing set.

Step 2: Signal pre-processing. Two moving windows are
applied to the acquired AE signal.

(1) MVW is first applied to the original signal for dimension
reduction and extracting detailed information.

(2) MEW is applied to the data; instead of extracting the
energy feature at each moving step immediately, the
covered data are prepared as the input of autoencoder.

Step 3: Data reconstruction. The processed signals are fed
into autoencoder for denoising.

Step 4: Obtain health indicator. Calculate the energy prob-
ability distributions of the reconstructions. A fault alarm
threshold is constructed on the basis of the IEPF values cal-
culated from the training data.

Step 5: Decision making. The IEPF value of the testing set
exceeding the threshold is considered a fault alarm.

3. Experiment and discussion

3.1. Test rig and data acquisition

To monitor the rolling contact fatigue phenomenon occurring
in a roller bearing element, a run-to-failure test was carried
out using an instrumented special-purpose testing rig designed
at SINTEF Industry (Trondheim, Norway). The experimental
setup is schematically illustrated in figure 2(a). The test spe-
cimen (central roller) is supported by three rollers, and each
roller is supported by two needle bearings SKF NA 6914-zw.
The wideband differential (WD) sensors (MISTRAS, USA)
(only one sensor was used during the test) were connected
to the data acquisition system as displayed in figure 2(b).
The signal was amplified by 40 dB in the frequency band
20–1200 kHz by a 2/4/6 low-noise preamplifier (MISTRAS,
USA).

The AE recording started automatically when the axle rota-
tion frequency was greater than the threshold. After warming
up to 47 ± 2 ◦C, the initial axle rotation frequency was set
at 364 rpm at the initial load of 67.1 kN, corresponding to
1807 MPa contact stress. The test was interrupted periodic-
ally, as is indicated by the vertical lines in the test diagram rep-
resented in figure 6 for ultrasonic inspections performed with
an Olympus OMNISCAN SX phase array ultrasonic scanner
(PAUT). As the PAUT inspections revealed no faults after ini-
tial cycling up to approximately 3× 106 cycles (106 axel rota-
tions), the load gradually increased in a stepwise manner up
to 91.3 kN (2002 MPa contact stress). The cumulative number
of fatigue cycles reached 2.7 × 107 cycles. Excessive vibra-
tions were detected in the machine at this load when running

Figure 2. Rolling fatigue test rig: photographic image and
schematics of the geometry of supporting rollers and the testing
roller (a), and a close-up view of the setup instrumented with AE
sensors (b).

Table 1. Number of AE records for different stages of damage
propagation.

Health condition
Number
of records

Number of
fatigue cycles

No damage 542 2.8 × 107
0.5 mm crack 377 3.6 × 107
1 mm crack 809 4.8 × 107
1.5 mm crack 718 6.5 × 107
2 mm crack 25 6.6 × 107

at a rotational speed of 364 rpm. Therefore, the axle rota-
tion frequency was reduced to 256 rpm until the end of the
test. The test was continued with a 91.3 kN load, and the first
sub-surface crack that was detected by the PAUT was after
2.8 × 107 fatigue cycles at approximately 4 mm below the
contact surface. The smallest detected crack was estimated
to be 0.5 mm long. The continued regular PAUT inspections
revealed continuous slow crack growth in the longitudinal dir-
ection up to 2 mm length along the roller axis before the test
was terminated. The test roller was then sectioned for metal-
lographic inspection and verification of the PAUT results. As
predicted by PAUT, three sharp fatigue cracks were observed
beneath the surface.

The AEwaveforms were continuously recorded at a 2MHz
sampling frequency for 2 s per record using the Kongsberg
HSIO-100-A high-speed acquisition module. At the beginning
of the test, AE streams were collected every 60 min. After
the confirmation of the first sub-surface crack, the time inter-
val between the successive AE acquisitions was reduced to
20 min. In total, 2471 records were qualified for the analysis.
The number of records corresponding to different stages of
crack growth is presented in table 1. The records are indexed
from 1 to 2471 according to the time of acquisition. The recor-
ded raw AE signals are plotted in figure 3 for illustration. An
appreciable change in the AE amplitude is first observed after
4.6 × 107 fatigue cycles. Ultrasonic inspections revealed a
crack of 1 mm at this stage.

Several randomly chosen AE records, which are typically
observed during different stages of the damage propagation,
are shown in figure 4. The evolution of the AE waveforms can
be observed. At first, theAEwaveforms exhibited evident peri-
odical characteristics as shown in figure 4(1) due to the routine
operation of the rotating machine. After the fatigue cycle was
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Figure 3. Diagram showing the raw AE signals against the number
of fatigue cycles.

Figure 4. Examples of randomly chosen representative AE records
at different stages of damage propagation.

accumulated to 2.8× 107, the initial periodic behaviour in the
waveforms disappeared—the effect is assumed to be related to
the generation of AE signals from the defect. The continuous
background quasi-steady AE signal is assumed to be produced
primarily by the over-rolling of roughness asperities [23]. If a
defect forms on either the surface or in the bulk of the test
roller, and if the sensor successfully captures it, the two ran-
dom processes—the background noise and the defect-induced
AE—overlap additively. The AE associated with the defect
can be considered as a disturbance, distorting the waveform of
the original signal. Assuming that the AE signal recorded from
the healthy stage is X, the AE signal reflecting fatigue damage
is denoted as X= X+ τ , where τ represents the AE response
to the defect that emerged in the roller. This type of signal
appears as illustrated in figure 4(2–3). With the propagation
of the fault, the peak amplitude of the corresponding AE burst
signal clearly exceeds the noise threshold at periodic intervals,
as shown in figure 4(4–5). The triple roller arrangement shown
in figure 1 assumes that each point of the test roller interacts
with the support rollers three times per revolution. When the
test roller containing the surface (or sub-surface) faults con-
tacts the support roller, the stress concentration in the bearing
elements along the defect boundary is expected to cause an
increase in the released elastic energy [2], resulting in period-
ical spikes in the AE waveforms.

Table 2. Autoencoder architecture.

Layer Key parameters Output size
Activation
function

Input / 1× 1024 /
C1 1× 25@16 1× 1000@16 ReLu
P1 1× 5@16 1× 200@16 /
C2 1× 16@32 1× 185@32 ReLu
P2 1× 5@32 1× 37@32 /
FC1 / 1× 1184 /
FC2 1184× 100 1× 100 ReLu
Output / 1× 1024 Sigmoid

Note: C, P and FC denote the convolutional layer, pooling layer and fully
connected layer, respectively. The notation ‘a × b@c’ describes the kernel
size and the output size, where a and b represent the row and column of the
matrix, and c denotes the number of channels.

3.2. Implementation details

TheMEW should contain information about at least one entire
axel revolution. For instance, the lowest axle rotation fre-
quency in the present work is 254 rpm, i.e. for a 2 s record-
ing, eight complete rotations are captured. Therefore, the mov-
ing step of MEW should be 8, and the maximum value of
IEPF is calculated as 3. Based on the sampling frequency used
(2 MHz), the window length and the moving stride of MVW
and MEW are set at 464 and 1024, respectively.

The first 60% of healthy data (325 recorded AE fragments)
were used to train the neural network and calculate the fault
alarm threshold. The threshold is calculated conventionally
as mean(x)± 3× std(x), where x denotes the IEPF values of
training data, and mean and std stand for the mean value and
the standard deviation, respectively. Since each record con-
tains eight complete rotations, after being processed by MVW
and MEW, 2471 training samples were constructed to train
autoencoder. The size of the training dataset is 2471× 1024.
The rest of the records are testing data. Both the training
and testing data are normalised using the maxminmap method
before feeding into autoencoder. Details of the network archi-
tecture are presented in table 2.

The reconstructed data are randomly exemplified from dif-
ferent stages of the experiment, as shown in figure 5. Each
image represents eight stacked sub-signals covered by MEW.
It is hard to identify the difference between healthy and faulty
data from the raw signal by the naked eye, especially at the
early damage stage featured by the 0.5 mm crack length; see,
for example, indices 448, 452, 561 and 805. However, the
reconstructions unveil more clear features if compared to those
of the raw signal. The reconstruction error (MSE) of autoen-
coder is shown in figure 6. As mentioned before, autoencoder
is reasonably tolerant to waveform changes; i.e. if the discrep-
ancy between signals is not very large, the neural network can
still fit the data with a low reconstruction error. As shown in
figure 6, the reconstruction error of the trained network is still
very low, especially at the earliest crack growth stage. The
drastic increase in the reconstruction error appears only with
the emergence of AE bursts. Mathematically, this is because
the sigmoid activation function maps the output to the range
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Figure 5. Visualisation of the reconstructed data from different stages of damage propagation.

Figure 6. MSE (reconstruction error) of autoencoder; the inset
shows a magnified view of MSE in the range of record indices from
0 to 2000.

of (0, 1); however, the peak of the AE burst will exceed the
upper boundary of the sigmoid function without the corres-
ponding training data. The results manifest that theMSE indic-
ator taken alone is not sufficient to identify early faults.

3.3. Evaluation methods

In the following analysis, the performance of conventional
statistical parameters is investigated and compared with the
one proposed in this work. The quality of the probed para-
meters is assessed from two aspects: (1) timely and accur-
ate detection of emerging faults and (2) better description
of the AE waveform evolution. The 19 statistical parameters

Table 3. Statistical parameters extracted from time domain,
frequency domain and time–frequency domain.

Domains Parameters

Time domain (1) Root mean square (RMS); (2) skewness;
(3) kurtosis; (4) shape factor; (5) crest factor;
(6) impulse factor; (7) margin factor;
(8) histogram-based information entropy (IE);
(9) energy entropy (EE); (10) power.

Frequency
domain

(11) Mean frequency (MF); (12) RMS of
frequency (RMSF); (13) standard deviation of
frequency (SF).

Time–frequency
domain

(14) STFT + power entropy; (15) STFT +MF
entropy; (16) STFT + RMSF entropy;
(17) STFT + SF entropy; (18) wavelet packet
energy entropy (WPEE); (19) wavelet packet
singular entropy (WPSE).

Note: (14–17) short-time Fourier transform (STFT) was implemented with a
hamming window with a length equal to 4096 readings. The window slid
over the original data to calculate the discrete Fourier transform of the
windowed data, and the overlap of each moving step was 512. (18–19)
Wavelet packet transform was applied to perform three-layer decomposition
of the original AE signal using the ‘dmey’ wavelet, and results in eight
decomposed frequency bands.

listed in table 3 were extracted from the time domain, fre-
quency domain and time–frequency domain and were probed
for the sake of comparison. To quantify the performance of
all these indicators, the data were categorised into two classes
as ‘healthy’ and ‘faulty’, and three evaluation indicators—
Accuracy, Specificity and F1-score were measured, as defined
below [33]:

Accuracy=
TP+TN

TP+TN+FP+FN
(12)

Specificity=
TN

TN+FP
(13)
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Figure 7. Definition of the confusion matrix.

Figure 8. Accuracy, specificity and F1-score of the probed
parameters sorted in descending order.

F1-score= 2× Precision×Recall
Precision+Recall

(14)

where TP, FN, FP and TN are abbreviations of true positive,
false negative, false positive and true negative, respectively, as
described in figure 7. Accuracy measures all correctly classi-
fied samples. Specificity quantifies the ratio of negative class
predictions of all negative samples. The F1-score provides
a single score that balances both the concerns of precision
and recall. Precision and recall are defined as TP/TP+FP
and TP/TP+FN, and quantify the number of correct posit-
ive results divided by all positive results and relevant samples,
respectively.

Accuracy, Specificity and F1-score of the probed paramet-
ers are compared in figure 8. Based on these three quality
indicators, the proposed parameter exhibits the highest scores.
IEPF generates fewer false fault alarms and more true fault
alarms compared with other parameters tested. Although para-
meters such as RMS, skewness, crest factor, impulse factor,

etc, have been used with greater or lesser success by many
researchers, in the present settings, they perform quite unsat-
isfactory. This prompted us to seek new reliable parameters.

The top eight parameters performing better in Accur-
acy (excluding IEPF) were selected for further comparison.
Table 4 presents the values of accuracy of the selected para-
meters at different experimental stages. The accuracy at each
stage was obtained using the formula F/N, where N denotes
the total number of records at a specific experimental stage,
and F represents the true fault alarms at this stage. Most of
the parameters indicated the AE waveform changed substan-
tially when the crack was propagated to the mature stage with
a final length of up to 2 mm. Although parameters like wave-
let packet singular entropy (WPSE) and standard deviation
of frequency show relatively high accuracy at the 0.5 mm
crack stage, WPSE exhibits a higher rate of false alarms at
the healthy stage, and standard deviation of frequency (SF)
fails to detect the propagation of the fault. Since failure is an
irreversible and progressively propagating process, the indic-
ator is expected to be continuous and monotonic. Compared
with other parameters, the IEPF generates notably fewer false
alarms and more true fault alarms.

Scores of IEPF are plotted in figure 9 against the cumulat-
ive number of fatigue cycles. The red dots represent the events
with IEPF values exceeding the threshold, which are denoted
as fault alarms. One can see that IEPF transparently character-
ises the evolution of the recorded AE waveforms from the fol-
lowing aspects. First, the IEPF value corresponding to the ini-
tial healthy stage is approximately 0 (the average IEPF value
of the recordedAE signal at the healthy stage is 0.0026), which
indicates that the recorded AE signals present strong period-
ical patterns. The IEPF increases steeply in the second stage
when the first 0.5 mm crack is detected. Thus, a breakpoint
between the healthy and faulty stages can be easily identified.
Second, the IEPF value captures the initiation of the persistent
AE bursts at the intersection of the 1 mm crack and 1.5 mm
crack. Additionally, the results successfully characterise the
increase in the AE bursts after the 2000th record while main-
taining the general trend towards higher values.

To further compare the performance of IEPF with other
parameters, figure 10 shows the variation of the selected para-
meters from the beginning of the test to failure. Although EE

8
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Table 4. The accuracy of selected parameters at different stages of damage propagation.

Parameter

Fault conditions

No damage 0.5 mm crack 1 mm crack 1.5 mm crack 2 mm crack

IEPF 0.9742 0.4259 0.9148 0.9791 1
EE 0.9723 0.4233 0.8938 0.9652 1
Shape factor 0.9815 0.3836 0.6642 0.9889 1
STFT + power entropy 0.9705 0.4233 0.5889 0.9819 1
Kurtosis 0.9760 0.3307 0.5691 0.9833 1
STFT + SF entropy 0.9797 0.3598 0.3370 0.8428 1
WPSE 0.8930 0.6614 0.1037 1.0000 1
SF 0.9779 0.6111 0.1938 0.5369 0.3462
IE 0.9742 0.0397 0.1889 0.7650 1

Figure 9. The scores of IEPF from the durability test of the roller
bearing element.

Figure 10. The scores of selected parameters of the AE signals
from the durability test of the roller bearing element.

also presents relatively high accuracy in figure 8, it fails to
characterise the AE behaviour in response to the crack growth
up to 1 mm and further to 1.5 mm length. Compared to other
parameters, the IEPF shows excellent sensitivity to the emer-
gence of periodical AE impulses and exhibits a clearer descrip-
tion of the waveform evolution corresponding to the propaga-
tion of internal fatigue cracks.

4. Conclusion

In this paper, a durability test of a roller bearing element was
carried out to investigate the application of the AE technique
to sub-surface fault detection in a roller. The experimental res-
ults show that many known parameters, such as RMS, skew-
ness, crest factor, impulse factor etc, fail to characterise the
evolution of AE signals in relation to the damage initiation
and propagation. Therefore, a hybrid parameter called IEPF
is proposed to assess the fault behaviour through the evolution
of AEwaveforms. The proposed method combines the advant-
ages of information theory and autoencoder to achieve a high
sensitivity to the periodicity and its disturbance in AE signals.
Comparative tests were carried out to assess the quality of the
health status indicators from two aspects: (i) timely and accur-
ate detection of emerging faults and (ii) a more elucidative
description of the AE waveform evolution in response to the
emerging and propagating fatigue damage. The experimental
results verify the effectiveness of the proposed data processing
scheme for fault monitoring and possible diagnostics in roller
bearings. The proposed methodology can be reasonably easily
adapted to the CM of other rotating machines since it is driven
primarily by data and does not rely on specific knowledge of
the mechanical features of the system under control.
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