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ABSTRACT

An important part of health care involves upkeep and interpretation of medical databases
containing patient records for clinical decision making, diagnosis and follow-up treatment.
Missing clinical entries make it difficult to apply data mining algorithms for clinical decision
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support. This study demonstrates that higher predictive accuracy is possible using
conventional data mining algorithms if missing values are dealt with appropriately. We
propose a novel algorithm using a convolution of sub-problems to stage a super problem,
where classes are defined by Cartesian Product of class values of the underlying
problems, and Incomplete Information Dismissal and Data Completion techniques are
applied for reducing features and imputing missing values. Predictive accuracies using
Decision Branch, Nearest Neighborhood and Naïve Bayesian classifiers were compared
to predict diabetes, cardiovascular disease and hypertension. Data is derived from
Diabetes Screening Complications Research Initiative (DiScRi) conducted at a regional
Australian university involving more than 2400 patient records with more than one
hundred clinical risk factors (attributes). The results show substantial improvements in the
accuracy achieved with each classifier for an effective diagnosis of diabetes,
cardiovascular disease and hypertension as compared to those achieved without
substituting missing values. The gain in improvement is 7% for diabetes, 21% for
cardiovascular disease and 24% for hypertension, and our integrated novel approach has
resulted in more than 90% accuracy for the diagnosis of any of the three conditions. This
work advances data mining research towards achieving an integrated and holistic
management of diabetes.

Keywords: Data mining; missing value imputation; diabetes management; classifiers;
diagnosis accuracy.

1. INTRODUCTION

There has been a growing interest in understanding the applications of data mining for
clinical decision support in metabolic syndrome and diabetes mellitus type 2 due to its
clinical complexity and its association with an increasing risk for heart disease and stroke,
and hypertension [1-3]. Many studies have consistently reported suboptimal diabetes control
outcomes despite improvements in clinical information and self-management support
systems that have been recently established [4-9]. This is in part due to missing clinical data
which reduces the information content for accurate decision making. The rationale of the
study is that, given appropriate algorithms for imputing missing values, the accuracy of
diagnosis based on clinical data should improve. The prime objective of this study is to
propose novel imputation techniques in data mining to improve the predictive accuracy of
diabetes, hypertension and cardiovascular disease (CVD) from clinical data.

A naïve approach to dealing with a record having one attribute value missing involves
deleting the entire record. However, the removal of records may leave too few examples
covering specialized subsets of data and compromises the analytics. Another approach
involves restructuring the dataset into smaller sets, where each new set has minimal missing
values [10]. However, the decomposition of the data mining task into a series of smaller
interconnected tasks can impose a structure that reduces the associations that can be
discovered across all attributes. An alternative is to substitute the missing values with
imputed values. Experts familiar with diabetes can conceivably impute missing values
manually but this is rarely practical for assembling a large diabetes dataset as the amount of
missing data may be extensive and the method is subjective and therefore not repeatable.

Common approaches to imputation involve filling in missing values with the mean values of
corresponding attributes. This is computationally easy to apply but can compromise
generalisation because the record with the missing values may not be representative of all
records. However, if the mean is calculated solely from those records that have the same
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class value as the record with the missing value, predictive accuracy can be expected to
increase.

The approach presented in this study involves two strategies we call Incomplete Information
Dismissal and Contextual Data Completion by Mode. Incomplete Information Dismissal
involves eliminating features and records that do not contribute to a classification. This
involves a formally specified feature ranking algorithm. In [11], each class is considered as a
cluster of data points in the problem space. The cluster centre represents a signature for the
class. A new instance is classified by selecting the cluster centre closest to the point
representing the new instance. The least important features for a class are those that cause
data points to be closer to centres of other classes. With nominal/discrete data, it is more
convenient to use feature ranking based on association measures, particularly Information
Gain (IG). However, the approach described in [11] is conceptually the same.

The Data Completion involves the imputation of missing values. In this approach, a set of
points closest to the missing value point are selected, so that the class was the same. Each
possible replacement value is evaluated to identify the replacement that will make the
missing value instance closest to the others. This approach is dependent on other missing
values, so the algorithm iterates through successive imputations. Other approaches to
missing value imputation involve use of a classification algorithm where the data set is
prepared so that the class is the attribute with the missing value. A classification algorithm
such as a decision tree induction exemplified by C4.5 is trained using records with known
values and run to predict the attribute’s missing value. Imputation using classification
algorithms in this way is computationally expensive because a model for each attribute must
be trained. Values imputed by our algorithm involving the Data Completion approach are
finely tuned to more likely lead to high predictive accuracies when the dataset completed
with imputed values is used for classification.  In addition, we propose a novel integrated
approach where the classes are defined by Cartesian Product of class values for underlying
problems, namely diabetes, cardiovascular disease (CVD) and hypertension so as to set up
a super problem that would classify diabetes, CVD and hypertension at the same time - a
step toward a holistic management of diabetes.

Some diabetic prediction studies conducted recently [12] have achieved good classification
accuracies with a weighted sum approach compared to other data mining models such as
logistic regression and neural networks. However, the highest accuracy level achieved to
predict diabetes or prediabetes was only 77.87% based solely on traditional risk factors and
results are not presented in a clinical useful way. This paper reports that common data
mining algorithms can demonstrate higher accuracies for classification of diabetes, CVD and
hypertension if incomplete clinical data is managed appropriately by including a two-stage
approach of Incomplete Information Dismissal and Data Completion with convolution
(Cartesian Product) of class values of the three problems.

1.1 Background

Diabetes Mellitus (DM) is a metabolic disorder of multiple etiology. It is characterized by
chronic hyperglycemia and disturbances of carbohydrate, fat, and protein metabolism
resulting from defects of insulin secretion, insulin action, or a combination of both [7-8,13].
The most common types of diabetes are type 1 diabetes (insulin sensitive due to cellular-
mediated autoimmune destruction of the β-cells of the pancreas in 90% of cases and is
idiopathic in 10% of cases), and type 2 diabetes (insulin insensitive due to pancreatic β-cell
dysfunction and insulin resistance) [14]. Uncontrolled diabetes leads to a risk of
microvascular (retino-, nephro- and neuropathy) and macrovascular (cardio-,
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cerebrovascular and peripheral vascular) health problems.  Diabetes is increasingly reported
as a primary cause of death, and the risk of death for people with diabetes is twice as high
as for the general population with similar age [15].

While many clinical tests consider various standard factors such as age, blood pressure
(BP), age at clinical onset, body weight, family history, urinary blood sugar levels and
ketones, there is much more investigation required into how traditional and emerging
biomarkers combine for optimal control of diabetes [16,17]. As clinical tests become more
sophisticated, there is a huge amount of data collected from each patient on various
attributing factors including inflammatory, oxidative stress and genetic biomarkers that need
to be integrated into a comprehensive clinical decision making model. However, analysis
may be hampered or may not give the correct results when information is missing.

The way a data mining algorithm presents results for interpretation by an analyst depends, to
a large extent, on the algorithm.  The ID3 classifier described by [18] generates a decision
tree where nodes are attributes, arcs represent possible values, and leaf nodes represent
data to be classified, as illustrated in Fig. 1. Decision trees can readily be understood by
clinicians, however decision trees generated from many variables are typically very large
and cannot easily be interpreted [19]. Fig. 2 depicts the weighted sum visualization
(AWSum) output [20]. The horizontal bars depict the influence a pair of features has on a
classification of diabetes on the right side of Fig. 2 compared with one of no-diabetes on the
left side. A clinician can readily ascertain that the propensity toward diabetes for females
with a cardiovascular risk of 15-20% is quite high despite gender and CVD risk category not
contributing on their own to this conclusion.

Although data mining algorithms that present data visually in ways that enhance insight, as
exemplified by Figs. 1 and 2, are emerging, their usefulness is limited by the extent to which
missing values impede the classification.

Fig. 1. Conventional decision tree Fig. 2. Weighted sum visualisation
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1.2 Missing Value Imputation Techniques

Most techniques for the imputation of missing values treat numerical and categorical
attributes differently, so the same technique cannot be used when both numerical and
categorical features are present. A review of the imputation of numerical values including
techniques based on the Nearest Neighbor approach, Linear Interpolation, Cubic Spline
Interpolation and Neural Networks is provided by [21,22]. In general, these approaches use
the numerical values in a distance function that represents the degree of similarity between
records. In [23,24], approaches based on modeling of a data probability density function
using kernels such as Gaussian were evaluated, allowing the relationship between attributes
to be exploited. In this connection, [25] discusses the Expectation Maximization algorithm
(EM) introduced by the authors of [26], which relies on the data mean and covariance matrix.
Generally, a model of data can be fit to a sample. Many statistical software packages
(SPSS, SAS, to name a few) implement derivatives of EM and the alternative technique of
Multiple Imputation (MI) from the authors of [26]. A review of MV imputation methods in
classification is also given in [27]. A more recent missing value imputation technique using
an entropy based decision tree algorithm provides better results for datasets having higher
correlations among attributes [28]. However, attributes in medical datasets may not
necessarily be highly correlated and these methods are therefore still not optimal.

In dealing with incomplete medical data, some researchers have attempted to use missing
value imputation with general practice data [29-31], and longitudinal dietary data [32,33].
However, pitfalls in adopting a single technique have been reported by [34]. In [35], less than
forty studies that had applied data mining techniques to diabetes were found in a recent
systematic review of the literature. The relative paucity of studies can be explained by noting
that the performance of an effective data mining study in diabetes requires the assembly of
an appropriate dataset, comprehensive approaches for preparing the data for mining from
both discrete and continuous data, and presentation of results in a manner that can be
meaningfully understood by diabetes analysts.

As clinical tests become more sophisticated and numerous, there is a huge amount of data
collected from each patient on various attributing factors. Virtually all patient datasets are
replete with missing values for various reasons: equipment used for measurements
sometimes malfunctions; a value could be missing because data was never collected – eg
HbA1c test was never obtained or the patient was unable to complete the test. In other
situations, the value was simply not available at the time of collection but may have become
available subsequent to the assembly of the dataset.

This paper addresses the issues of missing values (MV) in clinical data sets, and as a first
step proposes novel data mining techniques to deal with, and impute missing values to
provide an improved and reliable diagnosis and management of diabetes.

2. MATERIALS AND METHODS

In this section, we describe how clinical datasets were collected and organized, and the
proposed methods adopted for the experimental study. We provide below details of how our
approach discretizes continuous variables to nominal values and deals with missing values
MVs using 3 classifiers: Decision Tree (DT), Nearest Neighbor (NN) and Naïve Bayesian
(NB).
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2.1 Clinical Datasets

The dataset used in this study is derived from the Diabetes Screening Complications
Research Initiative (DiScRi) conducted at a regional Australian university [36]. It is a
diabetes complications screening program in Australia where members of the general public
participate in a comprehensive health review. The DiScRi community screening
concentrates on diabetes, cardiovascular disease and hypertension as a triad of diseases.
There are no explicit groupings for retinopathy and neuropathy provided in the database and
therefore these were not considered in the current investigation. The screening clinic has
been collecting data over ten years and includes over one hundred features such as
demographics, socio-economic variables, education background and clinical variables.
Clinical variables included blood glucose level, HbA1c, cholesterol profile, inflammatory and
oxidative stress markers, other medical history, body mass index, peripheral vascular
function, and ECG derived variables. Data on 273 attributes from approximately 2500
attendances of nearly 900 patients have been collected in recent years. The dataset has
been used in several data mining applications [37-39]. Application of the Data-driven
Decision Guidance Management System (DD-DGMS) approach to this dataset is discussed
in the following subsections. Currently, the project is still continuing to collect data, and
therefore the dataset is not yet made public until completion of the project.

The database of 2429 records underwent compression to instantiate patients instead of
attendances. The latest data in chronological order was used to initialize patient records.
Any MVs in 102 applicable attributes were sourced from previous attendances leading to
approximately one-fourth of MVs being restored. Altogether, the 824 instances included
patients not diagnosed with diabetes mellitus of any type (594), those diagnosed with T2DM
(211) and T1DM (19). Type 1 instances were later excluded as the feature-set was not
discriminating T1DM enough from control and T2DM, and due to the small T1DM sample.
Fig. 3 provides a typical dataset snapshot of the attributing factors collected from the clinical
trials of patients diagnosed with diabetes, cardiovascular disease and hypertension. The
database includes patients' demographic information that form pre-determined data along
with the main clinical data as well as derived data.

The diabetes dataset assembled for this study contained 97 attributes, of which 65% were
incomplete, and 805 instances, of which none was complete, with 32% values missing
across all data, as appears in Table 1. The class structure for the current classification
problem is shown in Table 2. For example in row one, Type II Diabetes is the diagnostic
class (Class 1), anything else is in Class 0.

In this work, with many nominal attributes in the data, we adopt an approach based on
continuous attributes discretized.

2.1.1 Even frequency discretization

We discretize any continuous attribute using an algorithm we call Even Frequency
Discretization, so methods that work with all-nominal data could be applied. The technique is
an interpretation of the Fixed Frequency method [40]. Real-valued data is distributed into
intervals to accumulate frequencies of corresponding discrete values. The frequencies are
targeted to be as even as possible. Due to the limited precision in obtaining data, a value,
even though perceived as unique, may repeat. The number of intervals is same for all
attributes discretized. The adopted approach has proved being reliable in many applications.
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Table 1. Diabetes dataset

Attributes Instances Values
All Numerical Incomplete (%) Incomplete (%) Missing (%)
97 56 65 805 100 32

Table 2. Data subdivision by class

Problem Classes (%)
Unknown 0 1

Diabetes mellitus 0 74 26
Cardiovascular disease 28 54 18
Hypertension 20 32 48

‘Unknown’ – instances not having class attribute set; ‘0’ – control class; ‘1’ – diagnostic class

Fig. 3. Typical clinical dataset model
*BMI-Body Mass Index; BP-Blood Pressure; HDL- High Density Lipoprotein

2.2 Classifiers

2.2.1 Decision tree

The tree induction algorithms iD3, C4.5, C5 advanced by [18] partition data in a hierarchical
manner in the form of a tree where branches are represented by values of a particular
selected attribute. An optimal tree is formed by selecting a feature at each node that gives
the highest Information Gain (IG). Highly mixed partitions are nominated for further
subdivision. In this work, we pursue a simpler version of DT where no model of data is
learned but an appropriate leaf is directly accessed by mining through the training set. It is
appropriate to call this DT variety - Decision Branch (DB).
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2.2.2 Nearest neighbor

The NN algorithm used in this study is an adaptation of the well-known k-NN technique [41]
for nominal data. It uses the Hamming loss for a distance function in the pseudo-space of
data attributes. The loss, which normally counts dissidence of attribute values of two
compared instances, is weighted by Information Gain (IG) to make the space metric conform
better to the data [42,43].

2.2.3 Naïve Bayes

This is a classical method and widely used on nominal data despite the limiting assumption
of attribute conditional independence, given a class [44].

2.2.4 Classifying with MVs

The NB classifier is easily adaptable for data with MVs since any test instance can be
evaluated with some attributes withheld. However, this property also holds for NN and DB
methods. This feature of classification algorithm implementation is the short memory, or lazy
learning mode, whereby the learning is carried out anew for every test instance. Indeed, this
mode offers a general method of obviating MVs when classifying any new data.

2.3 Filling-in the Blanks

For a discrete or categorical variable with MVs, some dummy value can be assigned to
denote the missing value (e.g. “MV”). However, such an assignment of a dummy value
outside the attribute’s domain cannot be carried out as elegantly with numerical features.
Statisticians are known to have resorted to the insertion of dummy data (e.g. “999.999”) that
invariably distorts distance metrics underpinning classifiers.  The distortion of results when
using distance metrics then provides an additional rationale to discretize continuous
attributes in mixed attribute type domains. If MVs are sparsely distributed, they can be
ignored during the learning and generalization steps of the algorithm. However, this is not
possible for the data in this study because of the highly expressed attribute patterns of MV
inundation.

Some condensation of incomplete data can also be achieved by discarding instances or
attributes replete with MVs. However this cannot be a general method as only the training
set can be dealt with in such a manner. Therefore incomplete information dismissal is
proposed as a pre-processing step in the next section and is the first part of our approach for
MV handling.

2.3.1 Incomplete information dismissal

Data layers, namely instances or attributes, are eliminated one by one, whichever currently
conveys the least information, until a predetermined data reduction effect is achieved.
Attribute information is calculated using IG, and is associated with any value unless it is
missing. An attribute may be dismissed, even though it may have no MVs, which doubles as
a feature selection step [11].

A data completion algorithm as proposed in this research utilizes the ability of classification
algorithms to classify data without referencing MVs. The knowledge of class of an instance
being dealt with provides a clue to MV substitution from applicable ranges. However, it is not
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required to label all of the classifier training dataset. Data completion forms the second part
of the proposed technique.

2.3.2 Data completion

Our algorithm performs completion and classification of test instances at the same time by
substituting the attribute modes for MVs from an applicable sample of training data, which a
classifier accesses to make the prediction. It is necessarily an iterative process of tuning
instances in turn to the rest of the set that requires at least one valued instance per attribute
per class. MVs are substituted from the subset with the same class label as the test instance
within the extracted sample, whether the predicted class is the same or not. In the case
where the test instance is not labeled, the respective classification algorithm is used to set
the label. The iteration ends when the introduced values stop changing or a limit for the
number of cycles is reached. The goal is to achieve the highest possible classification
accuracy, which the training set assumes, even though the instances may be rare.

2.4 Assembling an Appropriate Dataset

Despite the preponderance of patient data collected in digital forms, assembling an
appropriate dataset to explore efficient diabetes management methods is inherently difficult
because of a paradox in the formulation of the analytics exercise: on one hand, one cannot
readily frame a question of interest without knowing what data is available, and on the other,
one cannot identify what data is required without knowing the question of interest. The
paradox presents itself in data mining process models such as CRoss Industry Standard
Process for Data Mining (CRSIP-DM) [45], where the need to identify business objectives is
advanced as a first step so that appropriate questions can be formulated to guide the
selection of data. There are no clear ‘business’ objectives in diabetes mining, as the
questions of interest are usually framed as high level questions such as “Identify risk factors
for diabetes”, or “Predict blood glucose level” that cannot inform the selection of data,
because variables that might be relevant are not known. In this study we advance the claim
that the paradox inherent in assembling a dataset for diabetes mining necessitates the use
of an extensive set of features that not only consists of features relevant only to diabetes but
covers a range of other health and clinical indicators.

3. RESULTS AND DISCUSSION

3.1 Classifier Performance

The performance of Naive Bayesian (NB), Decision Branch (DB) and Nearest Neighbor (NN)
classifiers in diagnosing diabetes, CVD and hypertension when applying the traditional
model in Fig. 4 with MVs skipped, is compared to the accuracy after MV imputation using
different strains of the proposed method in Fig. 5. The strains are denoted as NB, DB, and
NN - same as the classifiers at the core of the principal method. The accuracy is calculated
using leave-one-out cross-validation which is a conventional technique when a comparison
is involved.
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Fig. 4. Traditional classification model with missing values

Fig. 5. Proposed classification model with missing value imputation
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Fig. 5 provides an overview of the proposed classification model using our novel MV
imputation techniques. The transformation of the training and test set involves convolution of
class values for diabetes, hypertension and cardiovascular disease using Cartesian Product.
The Incomplete Information Dismissal and Data Completion, after having any continuous
features discretized, are performed prior to exposure of the dataset to the three classifiers.
These three moments form the main novelty of our proposed model.

To evaluate the performance of our proposed Incomplete Information Dismissal method, we
obtain a smaller dataset by reducing the amount of data by 50%. Fig. 6, used for illustration,
provides the overall, any-class accuracy for both full and reduced datasets after performing
data completion using the DB strain of the proposed method. It is evident from Fig. 6 that the
reduction not only does not impact on the diagnostic ability, but also gives an improvement
in some cases. At the same time, about 40% of MVs have been dealt with, without having to
fill them. Different results pertain to different sub-problems featured within the DiScRi data.

To illustrate the performance of our proposed Data Completion method, the accuracy of the
three classifiers when sidestepping MVs and after entering them using the DB strain of the
principal method is compared in Fig. 7. For example, with DB substituted MVs, the NN
classifier achieved 97% accuracy for CVD diagnosis with the full dataset as compared to
98% with the reduced dataset. High accuracies were also achieved for the diagnosis of
diabetes (94% to 95%), with some exception for hypertension (90% to 89%), which had a
minor decrease, using this combination. Similar results were obtained for NB and NN based
completion methods for each of the three classifiers.

Fig. 6. Overall classification accuracy (%) on full and reduced datasets - by different
classifiers (NB, DB, NN) after substituting MVs with Decision Branch inspired

surrogates
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Fig. 7. Improvement of diagnostic accuracy after MV submission after applying the
cartesian product

Dark portion: Class 1 diagnostic accuracy with MVs skipped; Light portion: Accuracy gain after Data
Completion using the DB strain of the proposed method. The classifier is NN

3.2 Benchmarking

We staged a super problem where classes are defined by Cartesian Product of class values
for diabetes, CVD and hypertension: this is a novelty of our approach that complements our
unique imputation techniques of Incomplete Information Dismissal and Data Completion. For
example, an instance may have the new attribute value as YNY (Yes for diabetes, No for
CVD status and Yes for hypertension). This ‘additional’ class is used to take advantage of
the nearest points formulation to cater for incomplete information dismissal and data
completion.  The advantage is that MVs on other attributes are imputed in a way that exalts
the new triple attribute.

The improvements in the diagnostic accuracy of our algorithm are benchmarked using the
three classifiers. The results of NN accuracy for full data of Class 1 is shown in Fig. 7 for
both before and after data completion by the DB based method.

3.3 Discussion

Overall, from the performance results it is evident that the diagnostic predictions are better
after data completion. While each classification method has its own merits and demerits, a
particular advantage of our data completion procedure is that it imparts better estimation of
any involved probabilities effectively extending the feature-set.
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after data completion. While each classification method has its own merits and demerits, a
particular advantage of our data completion procedure is that it imparts better estimation of
any involved probabilities effectively extending the feature-set.
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The classifiers sidestepping MVs achieve low accuracy in the diagnosis of diabetes,
cardiovascular disease as well as hypertension. Also, when MVs are ignored and replaced
with dummy data, the results are similar. This is probably due to the attribute rather than
instance pattern of inundation of data with MVs, as shared by the entire dataset. Hence, we
can infer that the affected attributes with MVs are predominantly irrelevant.

The performance of the NB based MV submission method in the current work stands out.
The algorithm not only completes the iterations much faster but also rather accurate. The
breadth of mode selection in the algorithm causes high contraction of data distribution in the
pseudo-space of attributes, that is, classes become identified by the distinct feature modes.
The DB guided MV submission performed slower and somewhat less accurate over the NB
counterpart, although any possible improvement may have been restricted due to the data.
The NN based data completion method shows the least improvement, although the accuracy
is still acceptable. This is quite contrary to the usual high performance of the NN
classification method and has to do with choices available for MV selection that are more
limited than in completion with DB.

In medical diagnostic problems, the attribute pattern of MV inundation is often prevalent.
Reducing the data set by 50% leaves all instances intact, though this is not the case with the
number of attributes. Our algorithm tries to withhold attributes that are either less informative
or with many MVs. In either case, trimming by half appears to be safe for all diabetes linked
problems as the results are almost unchanged. Nonetheless, if too many features are
removed the accuracy is expected to drop.  Also, even though individual features are ranked
by overall information gain, and attribute reduction occurs only for those that are least
informative and found at the end of the list, improvement in accuracy may not be always
guaranteed. However, the computational aspect of performance improves dramatically when
such superfluous attributes are discarded.

While the results obtained are good, filling many missing entries could be misleading. The
data is too flexible, and the high accuracy may be unwarranted. In this regard, the more
classes are embraced by a problem, the better. However, here there are only two for any
featured condition. There are no other constraints to narrow the range of MVs further. By
linking the diabetes, cardiovascular and hypertension classes, additional clues can be
arrived at. The three problems together interpret the same data, and so we expect the
substituted values to be the same. Hence, we have used a convolution of the three to stage
a super problem where classes are defined by the Cartesian product of class values of the
underlying problems. Cartesian attribute products in classification were made popular by
[46]. Here, each combination of the values corresponds to a class in the super problem. This
forms the main novelty of our approach of MV imputation as compared to existing ones in
the literature. In our model comprising the three problems with two classes, the Cartesian
product generates eight classes same in all problems, thereby imposing much tougher
constraints on MV ranges. This approach is innovative and provides an advancement
towards an integrated and holistic management of diabetes.

4. CONCLUSION

Large clinical data collected from patients often include missing values or incomplete data,
which poses a major problem for an integrated diagnosis. Data mining techniques dealing
with such incomplete data problems in clinical trials become popular. This work
demonstrated a considerable improvement in diagnostic accuracy after adopting the
proposed methodology for missing value submission. The data completion methodology can
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be applied to data of any type via discretization of continuous attributes. The advancement is
significant because quite high predictive accuracies, as measured with leave-one-out cross-
validation resampling, appear to be achievable even when datasets contain substantial
missing data.

Future work could involve the development of decision rules derived through the learning
mechanism of our novel missing value handling techniques of Incomplete Information
Dismissal and Data Completion in order to arrive at a decision tree model for new patients
with clinical data. This would provide an enhanced decision support system for an integrated
diabetes management, despite missing values in the patient's clinical data.
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