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ABSTRACT
Interior Search Algorithm (ISA) is a recently proposed meta-
heuristic inspired by the beautification of objects and mirrors.
However, similar to most of the metaheuristic algorithms, ISA
also encounters two problems, i.e., entrapment in local optima
and slow convergence speed. In the past, chaos theory has
been successfully employed to solve such problems. In this
study, 10 chaotic maps are embedded to improve the conver-
gence rate as well as the resulting accuracy of the ISA algo-
rithms. The proposed Chaotic Interior Search Algorithm (CISA)
is validated on a diverse subset of 13 benchmark functions
having unimodal and multimodal properties. The simulation
results demonstrate that the chaotic maps (especially tent
map) are able to significantly boost the performance of ISA.
Furthermore, CISA is employed as a feature selection technique
in which the aim is to remove features which may comprise
irrelevant or redundant information in order to minimize the
classification error rate. The performance of the proposed
approaches is compared with five state-of-the-art algorithms
over 21 data sets and the results proved the potential of the
proposed binary approaches in searching the optimal feature
subsets.

Introduction

Nowadays, several metaheuristic techniques have been effectively employed
to solve various optimization problems from different domains. There exist a
large number of metaheuristic techniques that effectively mimics the beha-
vior of humans, insects, birds and animals. The most widely utilized meta-
heuristic techniques are Particle Swarm Optimization (PSO) (Eberhart and
Kennedy 1995a), Genetic Algorithm (GA) (Goldberg and Holland 1988),
Flower pollination Algorithm (FPA) (Kalra and Arora 2016; Yang,
Karamanoglu, and He 2014), Firefly Algorithm (FA) (Arora and Singh
2014; Yang 2010a), Artificial Bee Colony (ABC) (Arora and Singh 2017a;
Karaboga and Basturk 2007) and Grey Wolf Optimization (GWO) (Joshi and
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Arora 2017; Mirjalili, Mirjalili, and Lewis 2014). Additionally, some of the
recent nature inspired metaheuristic techniques are Whale Optimization
Algorithm (WOA) (Mirjalili and Lewis 2016), Sine Cosine Algorithm
(SCA) (Mirjalili 2016b), Ant Lion Optimizer (ALO) (Mirjalili 2015),
Butterfly Optimization Algorithm (BOA) (Arora and Singh 2018) and more
recently Interior Search Algorithm (ISA) (Gandomi 2014). For the optimiza-
tion of parameters of every metaheuristic algorithm, each one has its own
deficiency such as low classification accuracy, poor generalization ability,
improper balance in exploration and exploitation, slow convergence speed
and entrapment in local optima. Furthermore, metaheuristic algorithms need
some randomness to proceed. In order to surmount all these problems,
different techniques have been utilized to enhance the performance of meta-
heuristic algorithms in the literature. In recent years, the application of chaos
theory to optimization algorithm in order to improve both exploration and
exploitation has attracted more attention. The different properties of chaos
like quasi-stochastic, ergodicity and sensitivity against initial conditions assist
in improving the performance of different metaheuristics techniques. Chaos
theory has been hybridized in various algorithms such as PSO (Alatas, Akin,
and Ozer 2009), harmony search (Alatas, 2010), flower pollination algorithm
(Arora and Anand 2017), artificial immune system (Jordehi 2015), FA
(Wang, Li, and Ren 2010), WOA sayednew (Sayed, Darwish,
and Hassanien, 2018) BOA (Arora and Singh 2017b), Salp Swarm
Algorithm (SSA) (Sayed, Khoriba, and Haggag 2018) and grasshopper opti-
mization algorithm (Arora and Anand 2018a).

Data mining is a prominent research area that combines traditional data
analysis techniques with emerging computational algorithms to assist in

Figure 1. Visualization of chaotic maps.
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collecting heterogeneous data from distinct sources, transform it into valu-
able information and utilize it in designing effective business strategies for an
enterprise (Han, Pei, and Kamber 2011). It has been widely used in several
classifications, clustering, association and regression-based real-life problems
of different domains. Feature selection is one of the challenging tasks of data
quality which assists in selecting optimal data set’s features that boost the
performance of classifiers. In other words, it is an extraction process which
eradicates the irrelevant and redundant elements for the better understand-
ing of data sets. The attributes that have a linear relationship with one
another are called redundant attributes. The inclusion of these attributes
seems to be unreasonable, as one can extract the complete information by
merely incorporating one of these redundant attributes (Guyon and Elisseeff
2003). Nowadays, feature selection becomes mandatory as it is difficult to
mine and transform the momentous volume of data into valuable insights.

The feature selection approaches fall into two categories: filter based
methods and wrapper based methods (Balasaraswathi, Sugumaran, and
Hamid 2017). The filter-based methods utilize statistical data dependency
techniques to find the subset of features. The wrapper based methods employ
machine learning algorithms to look for a near-optimal solution from an
exponential set of feasible solutions. In filter-based methods, the selection
process is entirely independent of other data mining tasks (Liu and Yu 2005).
For example, one may be interested in extracting all those features where the
pairwise association is too high. However, in wrapper based approach, the
selection process is based upon the data mining techniques. The filter-based
methods are independent of the classifier and are relatively fast but these
methods do not reflect the relevance of the various dimensions while decid-
ing the subset of the features. These techniques use methods such as infor-
mation gain Yang and Pedersen (1997), principal component analysis (Han,
Pei, and Kamber 2011), mutual information (Peng, Long, and Ding 2005)
and employ measures such as the distance between the dimensions, correla-
tion between the dimensions and consistency. The interaction of features and
classifier is lacking in these methods which is a major limitation. Another
drawback is that these methods cannot work with redundant information.
On the other hand, the wrapper based techniques use classifier during their
search for the optimal subset by employing the classifier’s prediction accu-
racy. The researchers have found that the wrapper based methods obtain
better results than the filter based methods (Zawbaa, Emary, and Grosan
2016). The reason for the better performance of these techniques is the use of
machine learning technique (classifier) in the evaluation module.

The search space of the feature selection problems has been exponentially
increased due to the rapid growth of data and the level of complexity
associated with it. In conventional optimization techniques, a comprehensive
list of all possible subsets is explored which makes the use of conventional
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approach too intractable and cost intensive for big data sets (Kohavi and
John 1997). Further, due to promising computational intelligence techniques,
several metaheuristic algorithms are able to solve these problems effectively
whereas the conventional techniques are ineffective to provide the optimal
solution (Yang 2010b). In the past, various attempts have been made to
employ metaheuristic algorithms in order to solve feature selection problems.
For instance, Hedar et al. utilized rough set theory for attribute reduction
(Hedar, Wang, and Fukushima 2008), while Bello et al. used two-step PSO to
solve the feature selection problem (Bello et al. 2007). Different initialization
techniques in the PSO are also used to search feature subset space for
selecting (sub)optimal feature set (Xue, Zhang, and Browne 2014). Many
variants of GA have also been employed to select optimal features in different
fields, such as Kabir et al. used local search method based on hybrid GA
(Kabir, Shahjahan, and Murase 2011) whereas Chen et al. used GA based on
the chaos theory in the field of text categorization (Chen et al. 2013).
Attribute reduction algorithm using Record-to-Record Travel (RRT) algo-
rithm has been utilized using rough set theory to evaluate the quality of the
obtained solution (Mafarja and Abdullah 2013). A fuzzy-based RRT has also
been employed for solving rough set attribute reduction problems (Mafarja
and Abdullah 2015).

A modified GWO method in which a stochastic crossover is used to find
the position of the grey wolf has been proposed as a solution for feature
selection problem (Emary et al., 2016b) whereas in another research work,
GWO along with kernel extreme learning machine has been used to find the
optimal feature subset in the field of medical diagnosis (Li et al. 2017). The
binary versions of ant lion optimizer (Emary et al., 2016a) and flower
pollination based approaches (Sayed, Nabil, and Badr 2016) have been used
to solve feature selection problem. In (Gu, Cheng, and Jin 2018), the feature
selection problem has been solved by using a variant of the PSO known as
competitive swarm optimizer. Moreover, hybrid algorithms have also been
utilized for feature selection such as hybridization of differential evolution
and artificial bee colony has been done (Zorarpacı & Özel, 2016) whereas
hybrid algorithms based on the whale optimization algorithm and simulated
annealing are also employed for feature selection (Mafarja and Mirjalili
2017). The main motivation behind these hybrid algorithms is to employ
the capabilities of different algorithms for exploration and exploitation
simultaneously.

Recently, chaotic maps have been employed in ant lion optimization
algorithm with the aim to reduce the dimensions in high-dimensional data
sets (Zawbaa, Emary, and Grosan 2016). Another feature selection method
was proposed in (Mafarja and Mirjalili 2018) which has shown the use of
whale optimization algorithm for feature selection based on the wrapper
technique. Sayed et al. introduced the use of chaotic maps in crow search
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algorithm to improve the performance of the simple crow search for feature
selection (Sayed, Hassanien, and Azar 2017). More recently, an approach
based on the grasshopper optimization algorithm (Saremi, Mirjalili, and
Lewis 2017) and binary butterfly optimization-based feature selection
approaches (Arora and Anand 2019) have been successfully employed as a
solution for selecting the optimal feature set.

In spite of the above-mentioned techniques which have been proposed for
feature selection, still, there are many challenges unresolved such as higher
error rate in case of high-dimensional data sets, higher execution time and
selection of irrelevant features in the solution subset. Additionally, the No
Free Lunch (NFL) theorem indicates that there is no single optimization
algorithm which is adequate to provide solution for all optimization algo-
rithms (Wolpert and Macready 1997). Therefore, this suggests that the
present randomization based feature selection techniques can also suffer
from degraded performance while solving some problems which influenced
our attempts to analyze the efficiencies of the currently proposed Chaotic
Interior Search Algorithm (CISA) (Mafarja and Mirjalili 2017, 2018). To
tackle these issues, this study aims to propose a CISA for global optimization
and feature selection approach. The remainder of the paper is arranged as
follows: Section 2 presents the background information regarding ISA and
chaotic maps. In Section 3, the improved Interior Search Algorithm (CISA) is
presented. Section 4 discusses the experimental results on global benchmark
problems as well as feature selection problems. Finally, conclusions and
future work are given in Section 5.

Preliminaries

Interior Search Algorithm

Inspiration Analysis
Interior Search Algorithm (ISA) has been proposed to solve global optimiza-
tion problems by Amir H. Gandomi (Gandomi 2014). The main inspiration
of ISA is the beautification of objects and mirrors, specifically ISA deals with
two groups called mirror and composition. All the available objects are
initially decomposed into these two groups, i.e., mirror and composition
groups, which deal with the optimal placement of the mirrors and the
objects, respectively. In the composition group, the element’s composition
can be altered to get a more attractive view. Finally, the mirrors are placed
optimally in-between the objects to improve its looks and the main aim is to
find the fittest element for the placement of mirror. One of the best aspects of
ISA is that it has only one parameter to control. ISA has been employed to
solve engineering optimization problems (Gandomi and Roke 2014), water
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management (Moravej and Hosseini-Moghari 2016), digital differentiator
design (Kumar et al. 2015) and automotive control problems (Yıldız, 2017).

Mathematical Model of ISA
The working principle of ISA is based upon esthetic mechanism used in
interior design and decorations. The methodology of ISA has been explained
in six steps which are given below:

(1) The algorithm starts with the random generation of element location
where the location of elements is restricted to Lower Bound (LB) and
Upper Bound (UB). The fitness of each random location is computed
and on the basis of minimization or maximization problem, the fittest
element is selected as global best and is denoted as xjGbest.

(2) Further, the remaining elements are randomly partitioned into two
distinct groups, i.e., composition and mirror. This division is based
upon unique parameter (α) along with the following rules:

if r1 � α then
element 2 composition

else
element 2 mirror

end if

Here r1 is a random value in the range ð0; 1Þ which is associated with each
element. The value of α should be chosen very carefully to avoid biased
approach.

(3) Afterward, the composition of each element that lies in the composi-
tion group should be randomly changed using:

xji ¼ LBj þ ðUBj � LBjÞ � r2 (1)

Here, i and j represent the element position and iteration, respectively. LBj

and UBj are lower and upper bound values of j-th iteration, and r2 is the
value generated randomly in the range between 0 and 1.

(4) For the optimal placement of the mirrors, first of all, a mirror object is
randomly placed in between the global best element and all other
elements of the problem. The position of the mirror for the i-th object
and j-th iteration is given by:

xjmir;i ¼ r3 � xj�1
i þ ð1� r3Þ � xjGbest (2)
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where mir represents mirror object whereas r3 represents randomly gener-
ated variable, and its value lies between 0 and 1. Additionally, the image
location can be computed as follows:

xji ¼ 2xjmir;i � xj�1
i (3)

(5) The value of global best can be altered using random walk as men-
tioned below:

xjGbest ¼ xj�1
Gbest þ rn � λ (4)

where rn represents a normally distributed random numbers vector. The
dimension of rn and x should be same. Here, λ denotes scaling factor and
its value is significantly affected by the size of search space of the problem.
The real value of λ can be computed as:

λ ¼ 0:01� ðUB� LBÞ (5)

(6) Finally, the fitness value of composition and mirror elements are
calculated. Based upon the improvement, each location should be
updated. The minimization problem can be formulated as

xji ¼ xji f ðxjiÞ< xj�1
i

xj�1
i else

(
(6)

The pseudo-code of ISA is given in Algorithm 1.

Algorithm 1 Pseudo-code for the ISA.

Input: the fitness function, the upper and lower bound, number of ele-
ments, number of iterations

Output: the best solution

Initialize the elements

while stopping condition is not met do

Find xjGbest
for each element do

if xGbest
else if r1 � αr1 � α

else

end if

check for the boundary constraints

end for
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for each element do
Compute f xji

� �
end for

end while

Chaotic Maps

Generally, chaos can be defined as deterministic and arbitrary like strategy
observed in a dynamic non-linear system which is bounded and non-con-
verging. In mathematical terms, chaos is the arbitrariness of a basic dynamic
deterministic framework and the chaotic system might be considered as a
source of randomness Gandomi et al. (2013). The character of chaos is
apparently random and unpredictable and it also possesses an element of
regularity. Chaos utilizes chaotic variables instead of random variables Arora
and Singh (2017b). Consequently, it may perform downright searches at
higher speeds in comparison to the randomized searches which depend
upon probabilities Kohli and Arora (2017). Simply some functions (chaotic
maps) and few parameters (preliminary conditions) are required even for
extremely long sequences Naanaa (2015). Additionally, a vast range of
various sequences can be produced just by altering its preliminary condition.
Besides, these sequences are deterministic and reproducible. Furthermore, it
has an extremely sensitive dependence upon its preliminary conditions and
parameter Lu et al. (2014).

A large number of chaotic maps are available in the field of optimization
He et al. (2001); Arora and Singh (2017b). In this research work, 10 most
extensively utilized chaotic maps have been used as shown in Figure 1
(Tavazoei and Haeri, 2007). The mathematical modulations of these
employed chaotic maps are presented in the following subsections.

Chebyshev Map
Chebyshev map can be mathematically formulated as:

xkþ1 ¼ cosðP: cos�1 xkÞ (7)

Circle Map
This map was firstly defined by Andrey Colmogorov Lu et al. (2014); Zheng
(1994). It is a one-dimensional map which is a member of dynamical systems
on circle and is formulated as:

xkþ1 ¼ xk þ b� ð P
2π

Þ sinð2πxkÞmodð1Þ (8)
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The values of P and b are set to 0:5 and 0:2 respectively in order to generate
chaotic numbers between ð0; 1Þ.

Gauss Map
Gauss map is formulated as:

xkþ1 ¼
0 xk ¼ 0
1

xkmodð1Þ otherwise

�
(9)

1
xkmodð1Þ ¼

1
xk

� ½ 1
xk
� (10)

This map also generates chaotic sequences in the range ð0; 1Þ.

Iterative Map
The iterative chaotic map equation is defined as:

xkþ1 ¼ absðsinðP
xk
ÞÞ (11)

where P is the control parameter.

Logistic Map
This map is mathematically formulated as:

xkþ1 ¼ P:xkð1� xkÞ (12)

where the value of P is set to 4 in order to generate numbers in the
range ð0; 1Þ.

Piecewise Map
The family of piecewise map can be defined as:

xkþ1 ¼

xk
P 0 � xk � P
xk�P
0:5�P P � xk � 0:5
1�P�xk
0:5�P 0:5 � xk � 1� P
1�xk
P 1� P � xk � 1

8>><
>>: (13)

Here, the range of P, which is the control parameter is set in the
range ð0; 0:5Þ.

Sine Map
This map is formulated as:

xkþ1 ¼ a
4
sinðπxkÞ (14)

where P is the control parameter having values in the range ð0; 4Þ.
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Singer Map
This map is defined as:

xkþ1 ¼ Pð7:86xk � 23:31x2k þ 28:75x3k � 13:302875x4kÞ (15)

where P is the control parameter whose values lies in the range ð0:9; 1:08Þ.

Sinusoidal Map
Sinusoidal map is characterized as:

xkþ1 ¼ P:x2k sinðπxkÞ (16)

Here P is the control parameter and a simplified equation of this map is
utilized by using P ¼ 2:3 and x0 ¼ 0:7 which can be formulated as:

xkþ1 ¼ sinðπxkÞ (17)

Tent Map
The equation of the tent map can be characterized as:

xkþ1 ¼ 2xk xk < 0:5
2ð1� xkÞ xk � 0:5

�
(18)

The Proposed Chaotic Interior Search Algorithm (CISA)

In this section, a novel Interior Search Algorithm (ISA) is proposed where
chaotic maps are utilized to replace the critical parameter α with chaotic
variables which controls the intensification and diversification. In ISA, in
order to choose between intensification and diversification, the value of α is
compared with a random number. If the value of random number is greater
than α, then Equation (1) is executed other Equations (2) and (3) is per-
formed in order to achieve intensification and diversification, respectively.
Basically, diversification focuses on finding new better solutions by inspect-
ing the search space on a large scale, whereas intensification concentrates on
exploiting the search space in the local region. It is clear that optimum
balance of intensification and diversification phases will have considerable
effect on the performance of ISA. However, in classical ISA a fixed value of α
is utilized which hinders the ISA to achieve optimum results. Therefore, in
this study a chaotic sequence generated from chaotic maps is utilized instead
of a fixed value of α in order to properly balance the intensification and
diversification with the intention to enhance the performance of ISA algo-
rithm. Such a combination of chaos with ISA is defined as CISA. Equation
(19) demonstrates the balancing of intensification and diversification using a
chaotic variable.
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if r1 � CVt

Apply local search as shown in Eq: ð1Þ
else

Apply global search as shown in Eq: ð2Þ and Eq: ð3Þ
endif

(19)

In this equation, in order to decide whether the algorithm will perform
intensification and diversification, random number (r1) of the i-th search
agent is compared with chaotic value CVt which is obtained from the
respective chaotic map at t-th iteration. This integration of chaotic maps in
generating new locations can improve the overall performance of ISA which
will be demonstrated in the following section. The mathematical formula-
tions of the chaotic maps are presented in the preceding section. The detailed
description of the proposed chaotic version of the ISA algorithm is presented
as follows:

Parameter Initialization

At the beginning of the search process, the search agents are assigned
random positions in the search space. In case of global benchmark functions,
the upper bound and lower bound respective to the used function is initi-
alized whereas in case of feature selection problem, the upper bound and
lower bound are set to 1 and 0 for the given data. The size of the population
is fixed to 30 for global optimization problems and 7 for the feature selection
problem. In case of feature selection problem, the size of the population is
intentionally set low because of the complexity of the search space.

Fitness Function

The main goal of a fitness function is to assess every searching agent in terms
of quality. In global benchmark problems, every function is a minimization
problem, therefore the agent/solution which possesses the minimum value of
fitness function is chosen as the best solution obtained so far whereas, in case
of feature selection problem, the agent/solution which demonstrates lowest
classification error rate and least number of features is considered as the
optimal solution.

In this research work, every solution is represented as a single-dimensional
vector in which the length of the vector depends on the number of features/
attributes selected in a dataset. Each unit of the vector contains either 1 or 0,
where the value 1 means that the corresponding feature/attribute is chosen
whereas the value 0 means that the feature/attribute is not selected in the
feature subset. Feature selection problem can be considered as a multi-
objective optimization problem in which two opposing goals are to be
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accomplished; selecting a minimum number of features and achieving mini-
mum classification error rate. In feature selection problem, that solution is
considered best which contains the minimal number of features along with
the lowest classification error rate. Every solution is assessed by the proposed
fitness function which relies on KNN classifier Altman (1992) in order to
calculate its classification error rate on the basis of selected features in the
subset. Keeping in mind the end goal which is to find the balance between
the number of attributes and classification performance, the fitness function
in Equation (20) is employed in all the optimizers in order to evaluate the
solutions.

Fitness ¼ αγRðDÞ þ β
jRj
jNj (20)

where γRðDÞ represents the classification quality of KNN classifier, jRj
represents the number of features selected in the subset and jNj stands for
the total number of features in the original dataset. The two parameters, i.e.,
α and β are correlated with classification performance and subset length, α 2
½0; 1� and β ¼ ð1� αÞ adopted from literature Emary et al. (2016a); Mafarja
and Mirjalili (2017). In this study, CISA is employed to solve feature selection
problem in a wrapper mode. The subset which comprises minimum classi-
fication error rate and lowest number of features is selected as an optimal
feature subset describing the dataset.

Performance Metrics

To assess the proposed CISA, a variety of statistical measurements such as
mean fitness, standard deviation, best fitness and worst fitness have been
adopted on the global benchmark problems. In addition to this, in order to
confirm whether the results of the proposed CISA are significantly different
or not, a statistical test, i.e., Wilcoxon rank sum test is conducted. On the
other hand, the following measures are utilized for feature selection problem:

Evaluation Criteria

While experimentation, for each run, five different measures, i.e., classifica-
tion error rate, average selection size, mean, standard deviation, worst values
and best values have been computed and compared. The brief details of these
parameters are given below:

Classification Error Rate
It indicates the overall performance of the classifier. In other words, it
determines that how many instances have been incorrectly classified by
using selected features set. The classification error rate can be formulated as:
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Average classification error rate ¼ 1
M

XM
j¼1

1
N

XN
i¼1

Unmatch ðCi; LiÞ; (21)

where M is the number of times the optimization algorithm has been run, N
denotes the number of test set points, Ci is output class label for particular
data point i, Li is reference class label for i, and Unmatch is the comparison
function that gives outputs 0 when two labels are the same and outputs 1
when they are different.

Average Selection Size
It is defined as the size of selected features after each run divided by the total
number of features, averaged over a number of iterations and is formulated
as follows:

Average selection size ¼ 1
M

XM
i¼1

sizeðg�Þ (22)

where size represents the number of features selected in the testing data set.

Statistical Mean
It represents the average performance of number of optimal solutions
acquired during M different runs. It is formulated as:

Mean ¼ 1
M

XM
i¼1

g�i (23)

where g�i represents optimal solution during the i-th run.

Statistical Standard Deviation
It is a dispersion method which computes the variability of data. In other
words, it represents the variation or dispersion from the central value of data
series, i.e., how different outputs are concentrated around mean value or
scattered from it. If the standard deviation is low, then the data points tend to
be very close to the mean, whereas high standard deviation indicates that the
data is spread out over an extensive range of values. It can be formulated as
follows:

Std: dev: ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
M � 1

X
ðg�i �MeanÞ2

r
(24)

where g�i represents the best solution in the i-th run.
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Statistical Best
It is the best (lowest) value out of all the fitness values acquired during the
iterations and can be formulated as:

min1�i�Mfg�ig (25)

Statistical Worst
It is the worst (highest) value out of all the fitness values acquired during the
iterations as given in the following equation:

max1�i�Mfg�ig (26)

Average Selection Size
It is defined as the number of selected features after each run divided by the
total number of features, averaged over a number of iterations and is
formulated as follows:

Mean ¼ 1
M

XM
i¼1

sizeðg�Þ (27)

where sizeðxÞ represents the number of features selected in the testing
dataset.

Nonparametric Statistical Test
In this study, two nonparametric statistical tests are employed to check
whether the results of the proposed approaches are statistically superior to
other algorithms. The first test is the Wilcoxon rank sum test which returns a
parameter called p-value which is utilized to verify the significance level of
two algorithms. In other words, Wilcoxon test determines that whether the
two algorithms are statistically different or not (Derrac et al. 2011).
Afterward, a second test, Friedman test is conducted which measure the
performances of the algorithms based on the averages of the objective func-
tion values. Each algorithm was ranked according to their performance using
an average Friedman rank competition-ranking scheme. Friedman test
assigns a rank to all the values considered as a single group and consequently,
ranks of every group are added. In competition ranking, algorithms are given
the same rank if their performances are the same and algorithm which
performs the best is assigned smaller rank, i.e., better the performance of
the algorithm, smaller the rank.

Termination Criteria

Each search agent is evaluated using a fitness function and then its position is
updated. This process is done iteratively until the maximum number of
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iterations or whenever the optimal solution is found. In this study, the
termination criteria of stopping the optimization process is when the algo-
rithm has reached the maximum number of iterations which is 500 for
benchmark functions and 100 for the feature selection problem.

Experimental Results and Discussions

CISA for Global Optimization Problems

In this section, in order to evaluate the performance of the proposed CISA,
various experiments on a diverse subset of global benchmark test functions is
done. These functions have been chosen on the basis of dimensionality,
modality and separability and moreover, these functions have been widely
utilized by various authors in order to test the performance of metaheuristics
Sayed, Khoriba, and Haggag (2018); Arora and Anand (2018a). As shown in
Table 1, these functions can be divided into four categories. In the first
category, unimodal functions (F4-F7) investigate the convergence speed of
an algorithm. In the second category, multimodal functions (F1-F3 and F8-
F13) assess the ability of an algorithm to find global optima when the
number of local optima increases exponentially with problem dimension.
In the next category, functions F1, F4 and F6-F9 are separable while the rest
are non-separable. In the last category, step function (F6) which is discontin-
uous and has only one minima is used. The mathematical formulations, as
well as properties of these benchmarks, are presented in Table 1 Arora and
Anand (2018b).

The simulation results of classical ISA in comparison to different chaotic
versions of ISA on different global benchmark problems are reported in
Tables 2–5. The tables demonstrate the average, standard deviation, best
and worst fitness values found by each algorithm. CISA1 to CISA10 utilize
Chebyshev, Circle, Gauss/mouse, Iterative, Logistic, Piecewise, Sine, Singer,
Sinusoidal, and Tent chaotic maps, respectively. It can be analyzed that the
CISA10 (Tent chaotic map) outperforms other algorithms on nine out of 13
test functions whereas CISA1 (Chebyshev map), CISA3 (Gauss/mouse map),
CISA5 (Logistic map) and CISA9 (Sinusoidal map) performed better on one
benchmark function each. Note that the best results are highlighted in
bold. Inspecting the results of chaotic ISA algorithms on the four unimodal
functions in Table 2, CISA9 provides the best results on three unimodal test
functions and competitive performance on fourth function which proves that
Tent map improves the convergence rate of native ISA. The performance of
CISA10 on multimodal function is significantly better than the classical ISA
and other chaotic ISA variants which means that the local optima avoidance
of CISA10 has been significantly improved by the Tent chaotic map.
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Table 3 compares the standard deviation values of ISA with the proposed
CISA algorithms. As it can be seen in these results, CISA10 performs better
on six benchmark functions, maximum than any other chaotic ISA and
classical ISA. Besides, high stability of the CISA with the Tent chaotic map
in comparison to original ISA can be observed.

Table 4 demonstrates the best fitness values of ISA in comparison to the
proposed CISA algorithms. It can be easily analyzed that CISA3 (Gauss/
mouse map) and CISA10 (Tent map) have shown better performance by
outperforming other algorithms on three benchmark functions each whereas
native ISA, CISA1, CISA8 and CISA9 were not able to perform better on a
single benchmark function. It is worthwhile to mention here that the results
obtained by embedding different chaotic maps in the optimization process of
ISA are better than the original ISA on most of the benchmark functions.
The worst fitness values of ISA and proposed ISA are compared in Table 5.
As it can be observed, CISA with the Tent map obtained better results on 6
out of the 13 benchmark functions whereas CISA with Gauss/mouse chaotic
map and classical ISA outperformed other algorithms on two and one
benchmark function, respectively.

A nonparametric statistical test,Wilcoxon’s rank-sum test Derrac et al. (2011) is
conducted in order is to determinewhether the proposedCISA algorithms provide
a significant improvement compared to the original ISA or not. The test was
carried out using the results of the best algorithm in each benchmark function and
comparedwith each of the other algorithms at 5% significance. Table 6 presents the
p-values obtained by the test, where p-values less than 0:05 signify that the null
hypothesis is rejected, i.e., there is a significant difference at a level of 5%. HereN/A
means n0ot applicable,’ meaning that the corresponding algorithm could not be
compared with itself in the rank-sum test. The p-values in Table 6 verify that the
improvement achieved by CISA10 is statistically significant on the majority of the
benchmark functions. Afterward, a second statistical test, i.e., Friedman test is
conducted and the results of this test are reported in Table 7. As it can be observed
from CISA with Tent chaotic map attained the lowest rank which point out
significant improvements of tent chaotic map over the results of the other chaotic
maps. The results of Friedman test validated that the proposed CISA has strong
global searching ability and stability.

In order to better compare the behavior of the proposed chaotic ISA algorithms
on the global benchmark test functions in terms of convergence, Figure 2a is
provided. As it can be observed in Figure 2b, CISA algorithms have shown
competitive performance in comparison to original ISA. By carefully analyzing,
it can be observed that the convergence of CISA with the Tent map is significantly
faster than other algorithms in most of the functions, especially in F1, F2, F9, F10
and F13. This algorithm tends to outweigh other algorithms in the second quarter
of optimization. From these results, it can be concluded that embedding chaotic
variables during the optimization process of ISA can significantly boost the
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performance of the original ISA.On the basis of these results, the Tent chaoticmap
is selected as the optimal map. Therefore, in the next section, this particular map
will be further investigated in a more detailed manner.

CISA for Feature Selection

Here, 21 distinct data sets from UCI repository have been used for experi-
mentation as shown in Table 8. These data sets have been selected so that

Figure 2. Convergence curves of chaotic ISA algorithms on different test functions.
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Figure 2. (Continued).
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they represent various number of features and tuples on which the proposed
approach needs to be tested (Emary, Zawbaa, and Hassanien 2016a).
Interestingly, the selected data sets have huge search space so that the testing
of the optimization algorithm can be performed appropriately. Each data set
is divided in a way as done in cross-validation methods (Franklin 2005).

In order to carry-out K-cross-validation, testing and validation are exe-
cuted using k� 1 folds, where the k-th fold is utilized for testing and each
data set is evaluated for K �M times. Each data set is divided into three
fractions, i.e., training, validation and testing. Using the training fraction, the
classifier is trained and consequently, the validation fraction assesses the
performance of the classifier. In the end, using the last fraction, i.e., testing
is employed for evaluation of the features selected. During the training
process, every element/search agent of the ISA is moved to select a subset
of features. In order to validate the proposed CISA, its performance is
compared with five state-of-the-art feature selection methods namely GA
(Holland and Goldberg 1989), PSO (Eberhart and Kennedy 1995b), ALO
(Emary, Zawbaa, and Hassanien 2016a), Dragonfly Algorithm (DA) (Mirjalili
2016a) and SSA (Mirjalili et al. 2017) and classical ISA. There are several
parameters that should be initialized before employing these algorithms for
feature selection. In this study, the number of search agents are fixed to 7
whereas the number of iterations is set to 100 and the results are averaged
over 30 runs. For GA, crossover is set to 0:9, mutation ratio in set to 0:1 and
roulette wheel is used as the selection mechanism. In PSO, acceleration
constants are set in the range ½2; 2� whereas the inertia weight is set in the

Table 8. List of data sets used in the experiments.
S. No. Name No. of features No. of samples

1 Breastcancer 9 699
2 BreastEW 30 569
3 Clean1 166 476
4 Clean2 166 6598
5 CongressEW 16 435
6 Exactly 13 1000
7 Exactly2 13 1000
8 HeartEW 13 270
9 IonosphereEW 34 351
10 KrvskpEW 36 3196
11 Lymphography 18 148
12 M-of-n 13 1000
13 PenglungEW 325 73
14 Semeion 265 1593
15 SonarEW 60 208
16 SpectEW 22 267
17 Tic-tac-toe 9 958
18 Vote 16 300
19 WaveformEW 40 5000
20 WineEW 13 178
21 Zoo 16 101
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range ½0:9; 0:6�. For ALO, the mutation rate is set in the range ½0; 0:9�. These
parameter values have been selected according to the values used in the
literature (Emary, Zawbaa, and Hassanien 2016b). In this study, the same
fitness function with similar population size, search boundary, number of
dimensions and the same number of iterations are used in order to make a
fair comparison (Emary, Zawbaa, and Hassanien 2016a).

Table 9 outlines the classification error rate for the proposed CISA in com-
parison to the state-of-the-art feature selection optimizers. It can be analyzed
from these results that the performance of CISA is superior to ALO, GA, PSO,
DA and SSA on 16 data sets in terms of classification error rate whereas DA and
PSO performed better than other algorithms on two data sets each.
Furthermore, it is worthwhile to mention here that the conventional ISA does
not perform better than CISA over all the data sets used in this study which
clearly shows the strength of the proposed chaotic ISA approach. Overall, the
CISA showed lowest classification error rate, i.e., 0:1240 whereas PSO and DA
showed 0:1426 and 0:1427 error rate, respectively. GA came at fourth place by
demonstrating 0:1474 error rate whereas SSA has shown 0:1484 error rate.

The results of average selection size of the proposed CISA and other
feature selection approaches are outlined in Table 10. A similar trend can
be seen in average feature subset length where CISA exhibits much better
performance by selecting less number of attributes in comparison to other
approaches employed in this study. As per the results reported in this table,

Table 9. Classification accuracy of the proposed CISA vs other metaheuristics feature selection
algorithms on different datasets.
S. No Data set ALO GA PSO DA SSA ISA CISA10

1 Breast Cancer 0.0409 0.0403 0.0391 0.0374 0.0400 0.0450 0.0326
2 BreastEW 0.0608 0.0512 0.0622 0.0615 0.0653 0.0732 0.0470
3 Clean1 0.1535 0.1303 0.1451 0.1459 0.1569 0.1501 0.1176
4 Clean2 0.0504 0.0577 0.0535 0.0513 0.0538 0.0524 0.0429
5 CongressEW 0.0630 0.0587 0.0765 0.0682 0.0679 0.0706 0.0450
6 Exactly 0.2939 0.2694 0.2529 0.2519 0.2909 0.3209 0.3184
7 Exactly2 0.3020 0.3060 0.3041 0.2993 0.3015 0.3179 0.2548
8 HeartEW 0.2227 0.2133 0.2212 0.2227 0.2405 0.2484 0.1956
9 IonosphereEW 0.1405 0.1062 0.1197 0.1292 0.1110 0.1299 0.0886
10 KrvskpEW 0.0994 0.0785 0.0800 0.0731 0.1071 0.1660 0.1100
11 Lymphography 0.2137 0.1836 0.2094 0.2207 0.2264 0.2542 0.1568
12 M-of-n 0.1816 0.2012 0.1575 0.1707 0.1639 0.2355 0.1728
13 PenglungEW 0.1928 0.3279 0.1860 0.1732 0.1669 0.1846 0.0865
14 semeion 0.0286 0.0243 0.0324 0.0279 0.0351 0.0330 0.0236
15 SonarEW 0.1513 0.1250 0.1333 0.1494 0.1551 0.1590 0.1519
16 SpectEW 0.2119 0.1903 0.2159 0.2000 0.2174 0.2199 0.1507
17 Tic-tac-toe 0.2413 0.2391 0.2482 0.2436 0.2443 0.2895 0.2322
18 Vote 0.0742 0.0667 0.0742 0.0773 0.0804 0.0778 0.0307
19 WaveformEW 0.2934 0.3079 0.2808 0.2846 0.2909 0.3141 0.2836
20 WineEW 0.0457 0.0464 0.0479 0.0449 0.0494 0.0584 0.0315
21 Zoo 0.0784 0.0706 0.0549 0.0641 0.0524 0.0930 0.0314

Average 0.1495 0.1474 0.1426 0.1427 0.1484 0.1664 0.1240

The best results are highlighted in bold.
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CISA performed better on all data sets except WaveformEW and Zoo data
set, where better performance is demonstrated by ISA and GA, respectively.
The strength of the proposed CISA lies in the balanced exploration and
exploitation capability which allows it to eliminate redundant attributes
and then search the high-performance regions of the feature space inten-
sively. This indicates that Tent map has improved the performance of the
native ISA in terms of an average number of features/attributes selected.

The results of statistical measures (mean, standard deviation, best and
worst fitness values) obtained on the different runs of the algorithms on all
the data sets are presented in Tables 11–14. As shown in Table 11, CISA
outperformed ISA on all the data sets. Additionally, it can be observed from
Table 11 that CISA outperformed ALO, GA, GWO and PSO in mean fitness
measure on 17 data sets, PSO performed better on two datasets whereas GA
and DA performed better on one dataset each. It can be observed from
Tables 12 and 13 that CISA has shown superior performance overall on
most of the datasets in best and worst fitness measure. A summary of the
statistical standard deviation measure results obtained for all the data sets is
shown in Table 14. It can be analyzed from this table that GA performed
better on 12 data sets whereas CISA performed superior on 6 data sets which
shows the competency of CISA in comparison to the other feature selection
approaches (ALO, PSO, DA and SSA).

Table 10. Average feature length of the proposed CISA vs other metaheuristics feature selection
algorithms on different datasets.
S. No. Data set ALO GA PSO DA SSA ISA CISA10

1 Breast Cancer 7 6.1 5.7 6.27 7.2 5.27 5.2
2 BreastEW 24.27 12.2 18.33 20 18.27 16.33 11.73
3 Clean1 132 98.9 104.93 109.67 94.87 82.4 82.09
4 Clean2 95 94.1 109.4 100.4 90.4 86.6 82
5 CongressEW 9.87 7.1 10.8 10.87 8.4 8.2 6.82
6 Exactly 12.87 8.1 9 10.53 12.8 7.46 7.18
7 Exactly2 8.4 7.1 9.4 8.67 6.27 6.33 5.73
8 HeartEW 10.4 6.6 9.07 9.6 7.47 7.47 6.45
9 IonosphereEW 20.13 13.5 19.2 18 19.67 16.33 13.18
10 KrvskpEW 35.8 18 25.6 28.6 36 18.53 17.8
11 Lymphography 13.33 8.9 11.73 12.53 12.2 9.47 8.45
12 M-of-n 11.27 7.68 10.87 12.13 12.33 7.47 7.36
13 PenglungEW 172.07 153 183.33 175.2 162.33 160.67 151.82
14 semeion 187.8 149.4 171.6 193 161.8 136 134.2
15 SonarEW 48 30.3 37.6 40.6 34.13 31.53 28.91
16 SpectEW 13.87 7 12.07 14.67 11.33 11.33 6.91
17 Tic-tac-toe 8.8 5.8 6.73 7.2 8.07 5.17 5.09
18 Vote 8.4 5.8 9.33 8.87 8.53 8.8 5.64
19 WaveformEW 39.6 30.4 35.8 36 40 20.93 21.8
20 WineEW 11.07 6.73 10.07 9.53 9.07 7.4 6.54
21 Zoo 11.67 5.35 11.8 11.47 11.93 8.4 6.09

The best results are highlighted in bold.

320 S. ARORA ET AL.



Table 15 presents the p-values of CISA compared to other meta-heuristic
algorithms obtained using Wilcoxon’s rank sum test. It can be easily
observed from this table that the p-values obtained using the rank sum test

Table 11. Statistical mean fitness measure of the proposed CISA vs other metaheuristics feature
selection algorithms on different datasets.
S. No. Data set ALO GA PSO DA SSA ISA CISA10

1 Breast Cancer 4.80E-02 4.60E-02 4.50E-02 4.10E-02 4.80E-02 5.00E-02 3.60E-02
2 BreastEW 6.80E-02 5.50E-02 6.80E-02 6.80E-02 7.10E-02 7.80E-02 4.90E-02
3 Clean1 1.60E-01 1.34E-01 1.50E-01 1.51E-01 1.60E-01 1.54E-01 1.18E-01
4 Clean2 5.50E-02 6.20E-02 6.00E-02 5.70E-02 5.80E-02 5.70E-02 4.40E-02
5 CongressEW 6.90E-02 6.30E-02 8.20E-02 7.40E-02 7.20E-02 7.50E-02 4.50E-02
6 Exactly 3.01E-01 2.70E-01 2.57E-01 2.57E-01 2.98E-01 3.23E-01 3.17E-01
7 Exactly2 3.05E-01 3.08E-01 3.08E-01 3.03E-01 3.03E-01 3.20E-01 2.54E-01
8 HeartEW 2.28E-01 2.16E-01 2.26E-01 2.28E-01 2.44E-01 2.52E-01 1.96E-01
9 IonosphereEW 1.45E-01 1.09E-01 1.24E-01 1.33E-01 1.16E-01 1.33E-01 8.90E-02
10 KrvskpEW 1.08E-01 8.30E-02 8.60E-02 8.00E-02 1.16E-01 1.69E-01 1.12E-01
11 Lymphography 2.19E-01 1.87E-01 2.14E-01 2.25E-01 2.31E-01 2.57E-01 1.58E-01
12 M-of-n 1.88E-01 2.05E-01 1.64E-01 1.78E-01 1.72E-01 2.39E-01 1.75E-01
13 PenglungEW 1.96E-01 1.29E-01 1.90E-01 1.77E-01 1.70E-01 1.88E-01 8.60E-02
14 semeion 3.50E-02 2.90E-02 3.90E-02 3.50E-02 4.00E-02 3.80E-02 2.60E-02
15 SonarEW 1.58E-01 1.28E-01 1.38E-01 1.55E-01 1.59E-01 1.63E-01 1.52E-01
16 SpectEW 2.16E-01 1.92E-01 2.19E-01 2.05E-01 2.20E-01 2.23E-01 1.51E-01
17 Tic-tac-toe 2.49E-01 2.43E-01 2.53E-01 2.49E-01 2.51E-01 2.92E-01 2.35E-01
18 Vote 7.90E-02 7.00E-02 7.90E-02 8.20E-02 8.50E-02 8.30E-02 3.20E-02
19 WaveformEW 3.00E-01 3.10E-01 2.87E-01 2.91E-01 2.98E-01 3.16E-01 2.83E-01
20 WineEW 5.40E-02 5.10E-02 5.50E-02 5.20E-02 5.60E-02 6.40E-02 3.40E-02
21 Zoo 8.50E-02 7.30E-02 6.20E-02 7.10E-02 5.90E-02 9.70E-02 3.40E-02

The best results are highlighted in bold.

Table 12. Statistical best fitness measure of the proposed CISA vs other metaheuristics feature
selection algorithms on different datasets.
S. No. Data set ALO GA PSO DA SSA ISA CISA10

1 Breast Cancer 3.80E-02 4.00E-02 3.90E-02 3.10E-02 3.80E-02 2.70E-02 3.10E-02
2 BreastEW 5.60E-02 4.80E-02 4.90E-02 5.10E-02 5.90E-02 6.20E-02 4.30E-02
3 Clean1 1.18E-01 1.22E-01 1.00E-01 1.18E-01 1.22E-01 1.26E-01 9.80E-02
4 Clean2 4.90E-02 6.20E-02 5.80E-02 5.00E-02 5.40E-02 5.10E-02 4.00E-02
5 CongressEW 4.40E-02 5.40E-02 4.80E-02 3.50E-02 4.10E-02 4.50E-02 3.70E-02
6 Exactly 2.67E-01 1.50E-02 1.38E-01 1.55E-01 2.29E-01 1.17E-01 2.68E-01
7 Exactly2 2.52E-01 2.95E-01 2.75E-01 2.38E-01 2.70E-01 2.57E-01 2.25E-01
8 HeartEW 1.72E-01 2.02E-01 1.78E-01 1.59E-01 1.94E-01 1.89E-01 1.78E-01
9 IonosphereEW 1.11E-01 9.90E-02 8.10E-02 1.04E-01 7.80E-02 7.80E-02 6.30E-02
10 KrvskpEW 9.30E-02 6.30E-02 5.20E-02 6.20E-02 1.11E-01 6.10E-02 7.10E-02
11 Lymphography 1.65E-01 1.68E-01 1.79E-01 1.66E-01 1.69E-01 1.67E-01 1.23E-01
12 M-of-n 1.60E-01 1.40E-01 6.40E-02 1.57E-01 3.50E-02 1.40E-01 1.46E-01
13 PenglungEW 8.50E-02 1.37E-01 8.60E-02 3.50E-02 1.12E-01 5.80E-02 5.40E-02
14 Semeion 4.10E-02 3.30E-02 4.20E-02 4.00E-02 4.50E-02 2.90E-02 2.20E-02
15 SonarEW 1.28E-01 1.09E-01 9.10E-02 1.13E-01 1.29E-01 1.10E-01 7.90E-02
16 SpectEW 1.44E-01 1.70E-01 1.66E-01 1.42E-01 1.73E-01 5.00E-03 1.14E-01
17 Tic-tac-toe 2.13E-01 2.32E-01 2.04E-01 2.17E-01 2.13E-01 2.44E-01 1.92E-01
18 Vote 4.30E-02 6.10E-02 3.90E-02 5.10E-02 5.00E-02 3.70E-02 2.70E-02
19 WaveformEW 2.94E-01 3.12E-01 2.71E-01 2.78E-01 2.91E-01 2.76E-01 2.66E-01
20 WineEW 2.90E-02 3.80E-02 2.80E-02 3.10E-02 1.60E-02 2.50E-02 2.60E-02
21 Zoo 2.60E-02 6.10E-02 8.00E-03 7.00E-03 2.60E-02 4.40E-02 1.00E-03

The best results are highlighted in bold.
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prove that the superiority of CISA is statistically significant. Additionally, the
results also indicate that the results of CISA are statistically significant
compared to the native ISA. Furthermore, Table 16 demonstrates the results

Table 13. Statistical worst fitness measure of the proposed CISA vs other metaheuristics feature
selection algorithms on different datasets.
S. No. Data set ALO GA PSO DA SSA ISA CISA10

1 Breast Cancer 5.90E-02 5.10E-02 6.00E-02 5.90E-02 5.80E-02 6.60E-02 4.20E-02
2 BreastEW 8.30E-02 6.30E-02 7.80E-02 9.00E-02 8.80E-02 9.70E-02 5.50E-02
3 Clean1 1.93E-01 1.43E-01 1.86E-01 1.78E-01 2.00E-01 2.01E-01 1.44E-01
4 Clean2 6.00E-02 7.10E-02 6.10E-02 5.90E-02 6.40E-02 6.20E-02 4.70E-02
5 CongressEW 1.10E-01 8.30E-02 1.49E-01 1.07E-01 1.20E-01 1.38E-01 5.20E-02
6 Exactly 3.43E-01 3.78E-01 3.84E-01 3.19E-01 3.35E-01 4.08E-01 3.58E-01
7 Exactly2 3.55E-01 3.31E-01 3.35E-01 3.30E-01 3.63E-01 3.65E-01 2.97E-01
8 HeartEW 2.89E-01 2.61E-01 2.88E-01 2.84E-01 2.99E-01 3.07E-01 2.10E-01
9 IonosphereEW 1.68E-01 1.34E-01 1.63E-01 1.57E-01 1.57E-01 1.63E-01 1.20E-01
10 KrvskpEW 1.18E-01 1.50E-01 1.64E-01 9.70E-02 1.21E-01 2.37E-01 1.68E-01
11 Lymphography 2.51E-01 2.20E-01 2.76E-01 3.03E-01 2.99E-01 3.25E-01 1.91E-01
12 M-of-n 2.24E-01 2.88E-01 2.87E-01 2.10E-01 2.12E-01 3.04E-01 2.53E-01
13 PenglungEW 3.00E-01 1.90E-01 3.28E-01 3.26E-01 2.73E-01 3.53E-01 1.35E-01
14 Semeion 4.10E-02 3.30E-02 4.20E-02 4.00E-02 4.50E-02 4.60E-02 3.10E-02
15 SonarEW 2.16E-01 1.56E-01 1.87E-01 2.17E-01 2.14E-01 2.25E-01 2.11E-01
16 SpectEW 2.71E-01 2.18E-01 2.65E-01 2.52E-01 2.62E-01 3.53E-01 1.80E-01
17 Tic-tac-toe 2.75E-01 2.55E-01 3.31E-01 2.93E-01 2.93E-01 3.85E-01 2.57E-01
18 Vote 1.13E-01 8.80E-02 1.19E-01 1.24E-01 1.18E-01 1.12E-01 4.20E-02
19 WaveformEW 3.04E-01 3.19E-01 3.03E-01 2.99E-01 3.05E-01 3.42E-01 3.08E-01
20 WineEW 7.30E-02 8.20E-02 7.50E-02 8.60E-02 7.60E-02 8.50E-02 4.80E-02
21 Zoo 1.58E-01 1.01E-01 1.82E-01 1.25E-01 1.07E-01 1.40E-01 6.30E-02

The best results are highlighted in bold.

Table 14. Statistical standard deviation measure of the proposed CISA vs other metaheuristics
feature selection algorithms on different datasets.
S. No. Data set ALO GA PSO DA SSA ISA CISA10

1 Breast Cancer 8.00E-03 5.00E-03 8.00E-03 1.10E-02 8.00E-03 1.00E-02 5.00E-03
2 BreastEW 7.00E-03 3.00E-03 6.00E-03 1.00E-02 5.00E-03 1.10E-02 5.00E-03
3 Clean1 1.70E-02 8.00E-03 2.60E-02 2.10E-02 2.00E-02 2.40E-02 2.30E-02
4 Clean2 2.30E-02 1.36E-01 6.70E-02 3.80E-02 2.50E-02 5.00E-03 3.00E-03
5 CongressEW 3.00E-02 1.10E-02 1.90E-02 2.20E-02 2.50E-02 2.60E-02 6.00E-03
6 Exactly 3.10E-02 2.00E-02 2.90E-02 2.80E-02 2.80E-02 6.80E-02 3.30E-02
7 Exactly2 1.80E-02 1.20E-02 2.30E-02 1.50E-02 2.10E-02 2.90E-02 3.20E-02
8 HeartEW 9.00E-03 3.80E-02 4.50E-02 1.40E-02 5.00E-03 3.00E-02 1.20E-02
9 IonosphereEW 2.60E-02 1.60E-02 2.80E-02 4.10E-02 4.20E-02 2.50E-02 2.20E-02
10 KrvskpEW 2.00E-02 5.40E-02 5.80E-02 1.80E-02 4.90E-02 5.90E-02 5.10E-02
11 Lymphography 2.50E-02 1.30E-02 2.90E-02 2.30E-02 2.10E-02 4.30E-02 2.70E-02
12 M-of-n 3.50E-02 1.60E-02 2.70E-02 3.00E-02 2.50E-02 4.80E-02 4.50E-02
13 PenglungEW 2.00E-02 6.00E-03 3.40E-02 2.30E-02 2.10E-02 8.50E-02 2.90E-02
14 Semeion 1.80E-02 8.00E-03 1.90E-02 1.90E-02 2.00E-02 5.00E-03 4.00E-03
15 SonarEW 4.00E-03 3.00E-03 1.20E-02 9.00E-03 6.00E-03 3.60E-02 4.70E-02
16 SpectEW 1.20E-02 1.10E-02 1.20E-02 1.30E-02 1.50E-02 1.20E-01 2.80E-02
17 Tic-tac-toe 3.50E-02 1.50E-02 5.00E-02 3.70E-02 2.80E-02 4.20E-02 2.60E-02
18 Vote 2.10E-02 9.00E-03 2.80E-02 1.80E-02 2.20E-02 1.70E-02 6.00E-03
19 WaveformEW 4.00E-03 4.00E-03 1.00E-03 3.00E-03 4.00E-03 1.60E-02 1.80E-02
20 WineEW 7.20E-02 1.80E-02 7.70E-02 7.70E-02 5.20E-02 1.80E-02 9.00E-03
21 Zoo 7.00E-03 1.00E-03 2.00E-03 3.00E-03 4.00E-03 3.30E-02 3.00E-02

The best results are highlighted in bold.
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obtained from Friedman’s test. It can be analyzed from the results of this
table that the proposed CISA obtained the best rank in comparison to ISA

Table 15. p-Values of the Wilcoxon test of the proposed CISA vs. other algorithms(p � 0:05 are
underlined).
S. No. Data set ALO GA PSO DA SSA ISA CISA10

1 Breast Cancer 5.06E-03 4.69E-02 5.06E-03 5.06E-03 9.34E-03 1.25E-02 N/A
2 BreastEW 6.53E-04 8.05E-04 3.55E-02 6.55E-04 6.55E-04 6.55E-04 N/A
3 Clean1 1.46E-03 3.14E-03 6.08E-02 2.16E-03 1.79E-03 8.05E-04 N/A
4 Clean2 6.23E-04 6.23E-04 6.23E-04 6.23E-04 6.23E-04 6.23E-04 N/A
5 CongressEW 6.55E-04 2.61E-03 6.47E-04 1.21E-03 6.55E-04 9.85E-04 N/A
6 Exactly 4.09E-02 7.76E-01 N/A 3.34E-01 4.09E-02 1.99E-02 5.39E-03
7 Exactly2 6.55E-04 6.55E-04 6.47E-04 1.79E-03 6.55E-04 1.79E-03 N/A
8 HeartEW 4.51E-03 1.47E-03 5.34E-03 1.21E-03 6.41E-03 9.87E-04 N/A
9 IonosphereEW 8.03E-04 6.55E-04 1.05E-02 6.40E-03 3.77E-03 1.20E-03 N/A
10 KrvskpEW 4.31E-02 8.93E-01 8.93E-01 N/A 2.25E-01 2.25E-01 6.86E-01
11 Lymphography 8.05E-04 8.05E-04 6.35E-03 6.55E-04 8.05E-04 9.87E-04 N/A
12 M-of-n 1.40E-01 1.98E-01 N/A 6.91E-02 3.07E-01 2.16E-03 4.60E-01
13 PenglungEW 6.55E-04 9.87E-04 6.55E-04 6.55E-04 6.55E-04 1.47E-03 N/A
14 Semeion 4.31E-02 4.31E-02 4.31E-02 4.31E-02 4.31E-02 4.31E-02 N/A
15 SonarEW 8.05E-04 N/A 1.40E-01 3.77E-03 2.16E-03 7.60E-03 1.12E-01
16 SpectEW 2.61E-03 1.47E-03 1.77E-03 6.55E-04 6.55E-04 6.55E-04 N/A
17 Tic-tac-toe 3.06E-01 1.56E-01 5.32E-01 9.95E-02 2.11E-01 2.16E-03 N/A
18 Vote 6.55E-04 6.55E-04 6.34E-04 6.53E-04 6.53E-04 6.55E-04 N/A
19 WaveformEW 7.96E-02 3.45E-01 4.31E-02 2.25E-01 5.00E-01 4.31E-02 N/A
20 WineEW 6.45E-04 6.52E-04 1.78E-03 1.78E-03 1.47E-03 1.20E-03 N/A
21 Zoo 1.47E-03 6.31E-03 1.23E-03 2.67E-02 4.09E-02 6.53E-04 N/A

The value where P > 0.05 are underlined.

Table 16. Friedman test results of CISA vs other metaheuristics feature selection algorithms on
different datasets.
S. No. Data set ALO GA PSO DA SSA ISA CISA10

1 Breast Cancer 4.70 3.90 4.35 4.80 3.75 5.00 1.50
2 BreastEW 4.60 4.80 1.80 5.13 4.40 5.87 1.40
3 Clean1 5.20 4.60 2.43 4.97 4.20 4.67 1.93
4 Clean2 2.80 3.80 6.60 4.80 5.00 4.00 1.00
5 CongressEW 4.23 4.77 3.43 4.23 5.27 4.80 1.27
6 Exactly 4.33 2.27 4.67 3.87 2.47 5.20 5.20
7 Exactly2 4.60 4.27 3.93 4.07 4.60 5.27 1.27
8 HeartEW 3.60 4.67 3.20 5.00 4.20 5.47 1.87
9 IonosphereEW 5.53 5.00 3.10 3.40 4.30 5.00 1.67
10 KrvskpEW 5.40 3.20 2.80 4.60 2.80 5.20 4.00
11 Lymphography 4.40 4.73 2.40 5.07 4.20 5.67 1.53
12 M-of-n 4.17 3.37 4.60 3.97 2.90 5.80 3.20
13 PenglungEW 4.80 4.73 4.00 4.27 4.60 4.47 1.13
14 Semeion 4.60 3.80 2.20 5.40 5.20 5.80 1.00
15 SonarEW 4.43 4.47 2.07 4.93 3.23 4.67 4.20
16 SpectEW 4.77 3.93 2.87 4.77 5.23 5.03 1.40
17 Tic-tac-toe 3.93 3.60 2.73 4.53 4.13 5.93 3.13
18 Vote 4.57 4.87 3.13 4.70 4.73 5.00 1.00
19 WaveformEW 4.40 3.00 6.40 3.60 2.40 5.80 2.40
20 WineEW 4.83 4.03 3.47 4.83 4.53 5.03 1.27
21 Zoo 4.70 4.17 4.70 3.60 3.27 5.77 1.80

Total 94.60 85.97 74.88 94.53 85.42 109.43 43.17
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and feature selection approaches. This means that the results of CISA are
significantly better than the other algorithms.

To sum up, all findings achieved in the computational study show that the
proposed CISA is an efficient optimizer for feature selection. The underlying
reason for the better performance of CISA is its very high exploration and
ability to avoid local optima. The exploitation capability of the proposed
CISA allows it to efficiently avoid a large number of local optimal solutions
in the feature selection problems and on the same time discover a precise
estimation of the optimal subset.

Conclusion

In this paper, a novel hybridization approach based on Interior Search
Algorithm (ISA) and chaos theory is presented. In ISA, α parameter plays a
critical role in balancing the intensification and diversification. In the pro-
posed chaotic ISA, 10 chaotic maps are embedded in ISA in order to replace
the fixed value of α with the deterministic chaotic signals. The performances
of the proposed chaotic variants are compared on 13 global benchmark
functions and the simulation results indicated that the chaotic maps can
significantly boost the performance of the ISA in terms of balancing the
exploitation and exploration. Furthermore, the best chaotic ISA variant is
employed as a feature selection approach and its performance is validated on
21 benchmark data sets from the UCI repository. The results of CISA as a
feature selection approach are compared against well-known feature selection
methods namely Ant Lion Optimization (ALO), Genetic Algorithm (GA),
Particle Swarm Optimization (PSO), Dragonfly Algorithm (DA) and Salp
Swarm Algorithm (SSA). The assessment is carried out using a set of
evaluation criteria to analyze various aspects of performance and the results
demonstrated that the proposed CISA can adaptively explore the subset of
features optimally and converge to the optimal/near optimal solution better
than the other algorithms.

For future studies, more chaotic maps are worth applying to ISA and CISA
can be utilized as a filter feature selection approach to evaluate the generality
of the selected features. It would be interesting to hybridize ISA algorithm
with another population-based metaheuristic algorithm like butterfly opti-
mization algorithm.
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