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The study of sustainability challenges requires the consideration of multiple coupled

systems that are often complex and deeply uncertain. As a result, traditional

analytical methods offer limited insights with respect to how to best address such

challenges. By analyzing the case of global climate change mitigation, this paper shows

that the combination of high-performance computing, mathematical modeling, and

computational intelligence tools, such as optimization and clustering algorithms, leads

to richer analytical insights. The paper concludes by proposing an analytical hierarchy of

computational tools that can be applied to other sustainability challenges.

Keywords: decision support tools, sustainability, end-of-century climate targets, computational intelligence,

climate change, deep uncertainty

INTRODUCTION

The resolution of contemporary sustainability challenges requires the consideration of coupled
systems, long-term time frames, multiple objectives, and deep uncertainty (Liu et al., 2013,
2016; Hull et al., 2015). For instance, sustainable ecosystem management, water planning, and
climate change adaptation and mitigation require the joint consideration of environmental
and human systems. These spheres (i.e., systems) are inexorably connected as changes in the
behavior and constitution of the natural environment often induce changes in human institutions
and incentives. Conversely, the evolution of human preferences, technology, and institutions
determines significantly the development trajectories of natural resource systems. Often, if these
interactions are not monitored and regulated, one or both systems stop functioning in a sustainable
manner (Ostrom, 2009, 2011; Hull et al., 2015). For example, in the context of accelerated
global climate change, if anthropogenic emissions continue rising, the growing concentration
of greenhouse gases (GHG) in the atmosphere will result in climate imbalances (e.g., changes
in precipitation patterns, higher temperatures) that can induce irreversible changes in natural
ecosystems (e.g., loss of biodiversity) and in the economy (e.g., higher inequality).

Policy analysis in the context of sustainability is challenging. First, human and environmental
spheres are complex systems: path dependencies in both require the consideration of large time
frames, and their non-linear interactions induce dynamic behavior that is difficult to anticipate
and characterize. Second, deep uncertainty affects both spheres as experts and stakeholders often
disagree on the causal representation of these systems, the value of key parameters for analysis,
and the relevance of different metrics for describing sustainability (Lempert, 2003; Marchau et al.,
2019).
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The combination of both conditions, complexity and deep
uncertainty, has complicated the role of traditional policy
analysis methods when applied to sustainability challenges. On
the one hand, the use of simplistic models for analysis can result
in omissions relevant for determining long-term outcomes. On
the other hand, if the scope of an analysis is too narrow, it
is difficult to make the analysis relevant to a wide range of
stakeholders (Lempert, 2003; Marchau et al., 2019). Thus, a key
emerging question in sustainability sciences is how to design
robust policy interventions that explicitly account for complexity
and deep uncertainty and which can inform in practical detail
public policy discussions of sustainability challenges that affect a
wide range of actors.

Modern computational intelligence tools, such as machine
learning, optimization, agent-based modeling, and data
visualization, offer opportunities for circumventing these
limitations (Lempert et al., 2006; Groves and Lempert, 2007;
Bryant and Lempert, 2010; Kasprzyk et al., 2013; Isley et al., 2015;
Kwakkel, 2017). Yet, their analytical power for sustainability
sciences can be best harnessed when these are used in an
integrated way. For example, complex simulation models,
such as agent-based models (ABMs), can be used as scenario
generators in exploratory simulation contexts. Moreover,
general purpose and multi-objective optimization techniques
can be combined with ABMs to estimate the optimal policy
response across large sets of feasible parametrizations. The
resulting database can be further analyzed with machine
learning algorithms to classify outcomes in terms of the
combination of parameter values that trigger different policies.
Finally, interactive data visualization techniques can be
used to create decision support tools for stakeholders and
the public.

Over the last two decades, a growing body of research
has applied this integrative approach for studying various
sustainability challenges in water (Lempert and Groves,
2010; Groves et al., 2019b; Molina-Perez et al., 2019), energy
(Popper et al., 2009), and natural resource planning (Groves
et al., 2016; Fischbach et al., 2019). The findings of these
studies show that there are no silver bullets for achieving
sustainability across human and environmental spheres and
that policies that can contribute to achieving sustainable
outcomes frequently rely on combinations of different
measures that need to be implemented sequentially. First,
by addressing immediate vulnerabilities through robust
policies. Second, by responding adaptively to medium and
long-term changes in both spheres (Groves et al., 2019b;
Molina-Perez et al., 2019). This body of research, defined
as Decision Making under Deep Uncertainty (DMDU)
(Marchau et al., 2019), has cemented the foundations for
the general application of computational intelligence tools to
sustainability sciences.

This paper applies DMDU methods—specifically Robust
Decision Making (Lempert, 2003; Groves et al., 2019b)—to
structure an analysis of global climate change mitigation and
to demonstrate that the combination of multiple computational

tools for analyzing this sort of sustainability challenges leads
to richer analytical insights than those produced by traditional
monodisciplinary studies. Particularly, our analysis shows that
by integrating optimization, integrated assessment models, and
machine learning algorithms, it is possible to quantitatively
identify key drivers of vulnerability of climate change mitigation
policies. It also shows that alternative policy proposals can work
as complements across regions to cost-effectively decarbonize the
global economy. The paper concludes by proposing an analytical
hierarchy of computational tools that can be applied to other
sustainability challenges.

COMPUTER MODELING FOR CLIMATE
CHANGE POLICY ANALYSIS

Virtual Laboratories and Policy Regimes
Simulation models are popular tools in the field of climate
change because of (a) the long-term time horizons needed to
be taken into consideration, (b) the heterogeneous economic
and technological conditions of countries and industries, and
(c) the non-linearities and path dependencies associated with
climate policy. To highlight how the combined used of
integrated assessment models (IAMs) and other computational
intelligence tools can result into a more detailed understanding
of sustainability challenges, in this study we use the Exploratory
Dynamic Integrated Assessment Model (EDIAM) developed by
Molina-Perez (2016).

The EDIAM model is primarily based on the theoretical
framework developed by Acemoglu et al. (2012), which
takes into account the interrelation between climate mitigation,
innovation, and growth. Particularly, it describes the propagation
of climate policy impacts in the economy through endogenous
productivity changes that affect labor, energy, and technology
markets. EDIAM expands over this framework by including
the role of learning-by-doing, differentiating technology
properties across sectors, modeling entrepreneurs’ investment
decisions in continuous form, considering the role of
technological transferability across nations, and calibrating
environmental equations using a full ensemble of Coupled
Model Intercomparison Project Phase 5 (CMIP5) climate
projections (Taylor et al., 2012; IPCC, 2013).

The motivation for using EDIAM as an instrument for
experimentation in this paper is based on four of its
characteristics. First, it emphasizes the role that technology policy
plays in climate mitigation. Second, it describes how climate
policy propagates through time, changing the incentives of
economic agents (i.e., path dependency). Third, it considers the
interconnection between regions and between the environment
and the economy and its role in shaping global outcomes
(i.e., emerging behavior). Fourth, its specification allows for
the exploration of a wide range of climate, economic, and
policy assumptions. In short, this model serves as a good tool
for analyzing how the interplay of complexity (i.e., emergent
non-linear behavior) and deep uncertainty can be analyzed
through the combination of different computational intelligence
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tools. Having said this, the reader should be conscious of
the modeling features that fall outside the scope of this
study. First, although empirically valuable, the model currently
does not consider the possibility of endogenous innovation
in the emerging region. Second, international trade and oil
prices are also currently outside the scope of this work.
Finally, in the optimization setup of this framework, without
taxation on fossil fuels, it is not possible to mobilize the
resources necessary to fund complementary technology policy
for mitigating climate change. In reality, there are many other
financial channels through which it would be possible to fund
technology-based climate mitigation policies. In the following
paragraphs, we describe the most relevant aspects of the model
for this analysis1.

In EDIAM’s framework, international climate policy is
comprised on nine different elements:

1. Number of years policy intervention is active, starting in
2022: D

2. Carbon tax in the advanced region: τA

3. Carbon tax in the emerging region: τE

4. Technology subsidy for sustainable energy technologies in the
advanced region: hA

5. Technology subsidy for sustainable energy technologies in the
emerging region: hE

6. R&D subsidy for sustainable energy technologies in the
advanced region: qA

7. R&D subsidy for sustainable energy technologies in the
emerging region: qE

8. Green Climate Fund (GCF) technology subsidy for
sustainable energy technologies in the emerging region: hG

9. GCF R&D subsidy for sustainable energy technologies in the
emerging region: qG.

Formally, the optimal policy intervention is that which
maximizes the intertemporal utility of representative consumers
in the advanced and emerging regions (Equation 1.1)2. which
depends both on consumption C (Equation 1.7) and the
effects of fossil fuels used in production on temperature rise
1T (i.e., quality of the environment S, Equations 1.3–1.6),
subject to the intertemporal equilibrium conditions of both
economies (Equations 1.8–1.13) and to the budget constraint
(Equations 1.17, 1.18) in both regions (Acemoglu et al., 2012).
The setup of the budget constraints is such that investments
on technology-oriented climate action (i.e., technology and
R&D subsidies) cannot be greater than the fiscal resources
collected through a carbon tax in each region. Cooperation
between regions is possible through the use of the GCF,

1The complete specification of EDIAM, including the derivation of intertemporal

dynamics and calibration, can be found in Molina-Perez (2016), specifically

Chapter 3, pages 31–59, Appendix A, pages 152–161, and Appendix C,

pages 163 and 164. Additionally, we have made publicly available all

datasets and programming scripts describing the operationalization of EDIAM’s

framework in the following github repository: https://github.com/emolinaperez/

Ediam_vFrontiers.
2The EDIAM model is specified in continuous form. Yet, it is important to note

that the discounted values of utility are computed using discrete time steps after

the continuous model is numerically solved.

which redirects resources from the advanced region to the
emerging region.

Formally, this is expressed as follows3:

MaxD, τA ,τE ,hA ,hE , qA ,qE ,hG ,qG

T
∑

T0

1

(1+ ρ)t
(
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3For clarity, all time subscripts are omitted, but all variables in this optimization

set up are dynamic.
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≤
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where

β : atmosphere’s sensitivity to CO2 emissions (degrees Celsius)
ξ : atmosphere’s carbon sink capacity (ppm/BTU/year)
δ: average rate of natural environmental
regeneration (dimensionless/year)
1T: temperature rise since preindustrial times
(degrees Celsius)
CO2|6.0 ◦C : CO2 emissions concentration that will result
in temperature rise of 6.0◦C with respect to preindustrial
levels4 (ppm)
1Tdisaster : 6.0 (degrees Celsius)
φ (S): costs of environmental quality
degradation (dimensionless)
ε: elasticity of substitution (dimensionless)
ρ: discount rate (dimensionless/year)
pkj : primary energy prices of sector “j,” region “k” (usd/BTU)

5k
j : innovation profitability of sector “j,” region “k”

(dimensionless)
αk: proportion of capital income to the total income of the
economy in region “k” (dimensionless)
ηkj : energy technologies propensity to innovation in sector “j,”

in region “k” (dimensionless/year)
ψk
j,i: unitary cost of production for technology type “i” in

sector “j” in region “k” (usd/machine)
Lkj : share of labor working in sector “j,” region “k”

(dimensionless)
Ak
j : productivity of sector “j,” region “k” (dimensionless)

xkji: number of units of technology “i” used in sector “j” in

region “k” (machines)
θkj : share of entrepreneurs working in sector “j,” region “k”

(dimensionless)
γj : mean R&D returns to productivity in sector “j”
(dimensionless/year)
ηj: innovation propensity of sector “j” (dimensionless/year)
νj : probability of successfully imitating/adapting in the
emerging region the technologies of sector “j” developed in the
advanced region (dimensionless)
T : end of simulation, year 2100
T0 : initial year of simulation, year 2012
j ∈ {“s”−sustainble energy− “f” −fossil energy− }
k ∈ {“A”−advanced region− “E”− emerging region− }.

4The model is not defined beyond this limit of temperature rise because such level

of temperature rise will result in abrupt and irreversible changes to the global

climate system, including events such as the ice sheet collapse, permafrost carbon

release, and methane hydrate release (IPCC, 2013).

As shown in Equation (1.2), we model consumer preferences
through a constant relative risk aversion (CRRA) utility function,
which depends both on consumption C and on the quality
of the environment S. The parameter σ is the inverse of the
intertemporal elasticity of substitution. Equation (1.3) describes
the quality of the environment as dependent on temperature
rise, which is determined by Equations (1.4)–(1.6), where 1T
represents the increase in average surface global temperature
since preindustrial times for a given level of CO2 atmospheric
concentration. The parameter λ controls how quickly the quality
of the environment decreases as anthropogenic CO2 emissions
rise. In the same fashion as Acemoglu et al. (2012), the state
variable S is a metric of general environmental quality. In
this study, this is empirically measured in parts per million
(ppm) of atmospheric CO2 concentrations: the lower the value
of S, the higher the environmental quality of the planet.
The combination of Equations (1.3)–(1.6) connects this state
variable to CO2 atmospheric concentrations, which in turn allows
for internalizing the marginal impact of global fossil energy
consumption on consumers’ utility.

As shown in Equation (1.7), consumption depends on final
production and the cost of technologies used in production. Final
production (Equation 1.8) is modeled as a CES aggregate of
the two primary energy sources: fossil fuel-based energy (f) and
sustainable energy (s). Primary energy production (Equation 1.9)
assumes that economic agents use labor and an infinite number of
sector-specific technologies “i” for energy production (Acemoglu,
2002), Lkj represents the labor used in sector “j” ∈

{

f , s
}

, Ak
ji

is the productivity of technology of type “i” used in sector “j”,
and xkji is the number of units of technology type “i” in sector “j”

used in production, in region “k.” For operationalizing themodel,
we rely on the same assumption used by Acemoglu et al. (2012):

Ak
j ≡

∫ 1
0 Ak

jidi, such that Ak
j is the average productivity of sector

“j” in region “k.”
The share of production of each energy type “j” (Equation

1.10) depends on the prices of secondary energy types and
the carbon tax. Secondary energy prices (Equation 1.11) in
turn depend on productivity improvements in both energy
sectors, technology costs, and technology subsidies. Technology
costs (Equation 1.14) depend on the accumulated number of
technologies used in each sector “j” in both regions. The
parameter ιi in this power-law function controls the rate at
which experience leads to cost reductions in technology sector
“i.” The evolution of productivity of section “j” in the advanced
region (Equation 1.15) depends on share of entrepreneurs
working in this sector, its R&D returns to productivity, and
its innovation propensity. For the emerging region (Equation
1.16), we assume that technology entrepreneurs also innovate,
but their efforts are targeted toward imitating the existing
technologies in the advanced region. The success of these
endeavors depends on the ease of transferability of technologies
invented in the advanced region. The share of entrepreneurs
working on sector “j” (Equation 1.13) determines the sectorial
rate of technological progress, which depends on the value
“V(.)” that investors assign to the mean profitability of sector
“j” in region “k” (Πk

j ). Following the same approach as Train
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Kenneth (2003) and Achtnicht et al. (2012), this value function
is a deterministic utility component that models economic
agents’ decisions over competing alternatives in the logistic form
expressed in Equation (1.13).

The relative profitability of each sector “j” is described
in Equation (1.12). If this ratio is >1, then the majority of
research and development is directed toward sustainable energy
technologies. In the tradition of Acemoglu (2002) and Acemoglu
et al. (2012) framework, Equation (1.12) shows that there are
three key forces determining which sector captures the greater
share of entrepreneurial activity: (1) the “direct productivity

effect”
Ak
s

Ak
f

incentivizing research in the sector with the more

advanced and productive technologies, (2) the “price effect”
pks
pk
f

incentivizing research in the energy sector with the higher

energy prices, and (3) the market size effect
Lks
Lk
f

pushing R&D

toward the sector with the highest market size. In addition
to these forces, in the EDIAM modeling framework, two

more factors are at play: (1) the “experience effect”
(

ψf

ψs

)
α

1−α

pushing innovative activity toward the sector that more rapidly
reduces technological production costs and (2) the “innovation
propensity effect” ηs

ηf
incentivizing R&D in the sector that more

rapidly yields new technologies. Note also that the research and
technology subsidies also incentivize R&D in sustainable energy
technologies. Finally, Equations (1.16) and (1.17) indicate that
each region’s contribution to the optimal policy should not be
greater than the funds collected through the carbon tax.

Table 1 lists the set of policy regimes considered in this study.

For each policy, we indicate in which sectors (i.e., carbon tax,

technology subsidies, and R&D subsidies) cooperative actions

are implemented and in which sectors individual independent

actions are carried out. Thus, we model different policy

regimes as a mix of individual and cooperative actions across
sectors. In total, Table 1 describes nine different policy regimes.

The future without action (FWA) represents the benchmark

policy case in which climate policy is not implemented (i.e.,
laissez-faire economy). The policy regime “P1. I. Carbon Tax
[Both]” represents a non-cooperative case in which both regions
implement independently climate policy. Policy case “P2. I.
Carbon Tax + I.Tech-R&D[Both]” depicts a different non-
cooperative policy regime. In this case, the optimal policy
response includes independent levels of taxation, technology
subsidies, and R&D subsidies for both regions.

Multiple cooperation regimes are described in Table 1. For
all these policy cases, we assume that regions agree initially on
the implementation of a harmonized carbon tax as proposed

TABLE 1 | Description of alternative policy regimes considered.

Policy regime Independent sectors Cooperation sectors Formalism in optimization

problem

P0

FWA: Future Without Action

• None • None τA, τE , hA, hE , qA, qE , hG, qG = 0

P1

I. Carbon Tax [Both]

• Carbon tax • None τA, τE > 0

hA, hE , qA, qE , hG, qG = 0

P2

I. Carbon Tax + I.Tech-R&D[Both]

• Carbon tax

• Technology subsidies

• R&D subsidies

• None τA, τE , hA, hE , qA, qE > 0

hG, qG = 0

P3

H. Carbon Tax +

Co-Tech[GCF]+R&D[AR]

• No R&D subsidies in

emerging region

• Harmonized carbon tax

• Co-funded

technology subsidies

τA = τE > 0

hA, qA > 0

hE = hG > 0

qE = qG = 0

P4

H. Carbon Tax + Co-Tech[GCF] + I.

R&D[Both]

• Independent R&D subsidies • Harmonized carbon tax

• Co-funded

technology subsidies

τA = τE > 0

hA, qA,qE > 0

hE = hG > 0

qG = 0

P5

H. Carbon Tax +

Co-R&D[GCF]+Tech[AR]

• No technology subsidies in

emerging region

• Harmonized carbon tax

• Co-funded R&D subsidies

τA = τE > 0

hA, qA > 0

qE = qG > 0

hE = hG = 0

P6

H. Carbon Tax + Co-R&D[GCF]+I.

Tech[Both]

• Independent technology

subsidies in emerging region

• Harmonized carbon tax

• Co-funded R&D subsidies

τA = τE > 0

hA, hE , qA > 0

qE = qG > 0

hG = 0

P7

H. Carbon Tax + Co-Tech-R&D[GCF]

• None • Harmonized carbon tax

• Co-funded R&D subsidies

• Co-funded

Technology subsidies

τA = τE > 0

hA, qA > 0

hE = hG > 0

qE = qG > 0

For each policy regime, it is indicated in which sectors (i.e., carbon tax, technology subsidies, and/or R&D subsidies) cooperative actions are implemented and in which sectors individual

independent actions are carried out. Thus, each policy regime can be represented as a mix of individual and cooperative actions across sectors. The set of mathematical restrictions

used to represent each policy regime in the optimization framework is noted.
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by Nordhaus (2011); therefore, the carbon tax rate is the
same across both regions. We also assume that cooperation
under the GCF does not have to follow a unique architecture
and that it is possible to cooperate in certain sectors, while
allowing independent action in others. Policy case “P3: H.
Carbon Tax + Co-Tech[GCF]+R&D[AR]” considers the case
of a harmonized carbon tax across regions and cooperation in
co-funded technology subsidies under GCF. However, in this
case, independent R&D subsidies are only implemented in the
advanced region. Policy “P4: H. Carbon Tax + Co-Tech[GCF]
+ I. R&D[Both]” expands on the latter case by considering that
independent R&D subsidies are implemented in both regions.

Policy “P5. H. Carbon Tax + Co-R&D[GCF]+Tech[AR]”
includes the implementation of a harmonized carbon tax in
both regions, co-funded R&D subsidies under the GCF and
independent technology subsidies in the advanced region. Policy
regime “P6. H. Carbon Tax + Co-R&D[GCF]+I.Tech[Both]”
expands policy case P5 by allowing for the implementation of
independent technology subsides in both regions. Finally, policy
regime “P7: H. Carbon Tax + Co-Tech-R&D[GCF]” considers
the case in which in addition to a harmonized carbon tax,
cooperation under the GCF includes co-funded R&D subsidies
and technology subsidies.

Uncertain Stressors Across Spheres
To analyze the performance of different policy regimes across
uncertainty, we focus on four uncertain stressors, affecting two
spheres: (1) the elasticity of substitution between fossil and
sustainable energy inputs in production, and the economic
agents’ discount rate, impacting the economic sphere and
(2) climate sensitivity to GHG emissions and the capacity
of atmospheric carbon sinks affecting the ecological sphere.

Thus, there are two types of elements in our analysis: (1)
policy regimes that describe different sectorial interventions
and cooperation schemes between regions and (2) scenarios
which describe unique parameter combinations of economic and
climatic variables.

This framework allows us to explore uncertainty in more
detail by generating an ample set of emission trajectories through
variations of economic parameters and policy regimes. For
example, Figure 1 compares a subset of simulated emission
pathways that vary the elasticity of the substitution parameter
(ε, Equation 1.8) for two policy regimes, against the four
Representative Concentration Pathways (RCPs) included in the
CMIP5 dataset. It is possible to see that the range of variation
produced with these simulations is similar to that captured by
the four RCPs included in CMIP5. This feature is important for
this analysis because as discussed in section Machine Learning
Algorithms for Identifying Decision-Relevant Conditions, by
considering such a disaggregated set of variation, it is possible to
identify with higher precision vulnerability thresholds.

The elasticity of substitution is an important parameter in
the economic sphere because it describes the extent to which
sustainable energy technologies can be used to substitute the
functions of fossil energy technologies in secondary energy
production. The results of Acemoglu et al. (2012) have spurred
interest among empirical researchers on estimating more
accurately the potential level of substitution between the two
sectors. At present, initial empirical results show that the short-
and long-term values of the elasticity of substitution are likely to
be closer to the low substitution case considered in Acemoglu
et al. (2012), but more importantly, these initial results show
that the strength of the substitution effect in the long term is
highly uncertain. For instance, Papageorgiou et al. (2013) use

FIGURE 1 | Comparison Between Simulated (Left Panel) and Original (Right Panel) RCP Emissions Trajectories. (A) Emissions Pathways (EDIAM simulations). (B)

Emissions Pathways (RCPs in CMIP5). The right panel shows emissions time series for all RCPs considered in this study (i.e., RCP 2.6, RCP 4.5, RCP 6.0, and RCP

8.5). For each time step, the left panel shows the subset of emission trajectories used for comparing CMIP5 and EDIAM’s output.
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FIGURE 2 | Effect of Different Discount Elasticities of Substitution Scenarios on Optimal Policy Response’s Structure and Effectiveness. The vertical axis denotes

temperature rise with respect to preindustrial levels for different simulated time series. The color legend indicates the level of substitutability between the two sectors:

the darker colors denote scenarios of high elasticity of substitution, and the clearer-color scenarios of low elasticity of substitution. The structure of the optimal policy

response, as well the climate scenario and discount rate parameters used for the simulations, is highlighted for the highest and lowest elasticity of

substitution scenarios.

cross-country sectoral energy data and nested CES production
functions to estimate this parameter. They find evidence that the
elasticity of substitution in the short term is more likely to be in
the low substitution range (ε= 3) of Acemoglu et al. (2012) study,
but in the long term it is plausible that this parameter falls in the
high-range values. Another study by Pottier et al. (2014) argues
that the elasticity of substitution between sustainable energy and
fossil energy is also likely to be in the low substitution range (ε
= 3), perhaps even below one (ε < 1). They argue that this is the
case mainly because capital stocks for most of the energy system
last for many decades, and this delays substitution away from
fossil energy. However, the authors consider that in the long term,
as innovation broadens the range of technological possibilities,
it is plausible that all energy sources will be fairly substitutable.
These results and the debate among researchers on this topic
support the notion that the elasticity of substitution between
sustainable and fossil energy is a deeply uncertain parameter.
These empirical findings show that the current state of science
does not provide sufficient and adequate evidence to estimate
accurately this parameter. They also suggest that in the long term
a wide range of values is plausible.

We explore the implications of varying levels of
substitutability between the two sectors by considering 10
different scenarios for this parameter. Figure 2 lists the different
elasticity of substitution scenarios considered in this analysis
and exemplifies their effect on temperature rise stabilization.
It shows that the 10 scenarios considered for the elasticity of
substitution can result in substantially different outcomes. For

instance, it shows that for three high levels of substitutability
scenarios, ε = 10.0, ε = 9.2, and ε = 8.4, it is possible to
induce a full self-reinforcing transition away from fossil energy
before the end of the simulation runs (i.e., policy duration
< 300 years). In contrast, for the low elasticity of substitution
scenarios, ε = 3.0, ε = 3.8, ε = 4.6, and ε = 5.3, it is necessary
to sustain policy intervention (i.e., harmonized carbon tax in
both regions) during the entire simulation at a high level (i.e.,
50%) to delay temperature rise. This shows that the cost and
effectiveness of policy intervention is closely linked to the degree
of substitutability between the fossil and sustainable energy
sectors. The less substitutable these sectors are, the more effort
is required to induce a successful transition toward sustainable
energy and the decarbonization of secondary energy production
in both regions.

The discount rate is a mathematical formalism that helps
us express future costs and gains at today’s equivalent value.
In the context of climate change, this parameter attempts to
describe how societies of today value the environmental and
economic outcomes of the future. Controversy over the proper
value of the discount rate lies at the heart of many of the debates
associated with climate change policy. It should not be a surprise
that studies that use different discounting values reach different
conclusions regarding the structure of the optimal environmental
policy required to stabilize global temperature rise. This debate
is best exemplified by Nordhaus and Stern’s research on the
level of carbon taxation needed to keep temperature rise at
sustainable levels (Acemoglu et al., 2012). In short, Nordhaus,
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FIGURE 3 | Effect of Different Discount Rate Scenarios on Optimal Policy Response’s Structure and Effectiveness. Each line describes a single simulation run for a

specific discount rate scenario. All other input parameters are held constant (ε = 5.3 and Climate Model = NorESM1-ME). The resulting optimal environmental policy

is highlighted for two cases: for each, the different elements of the policy response are listed, including Carbon Tax, R&D Subsidies, Technology Subsidies, and Policy

Duration for both regions. Note that the trajectory of the optimal policy response is the same for both the 1.15 and 1.5% discount rates.

using a discount rate of 1.50% per year, finds that an initial
small carbon tax that increases over time would guarantee that
temperature rise will be kept below three degrees Celsius in
the long term, while Stern, using a discount rate of 0.10% per
year, argues that a higher initial carbon tax is needed to achieve
temperature rise stabilization sooner and avoid future significant
damage from climate change. This disagreement among climate
experts is evidence of the deep uncertainty associated with the
discount rate.

In this analysis, we explore this uncertain stressor by
considering a diverse set of discount rate scenarios. To develop
these scenarios, we assume that the maximum value that this
parameter can take is the one proposed by Nordhaus (i.e., 1.5%
per year) and that the minimum value is the one proposed by
Stern (i.e., 0.10% per year). However, we also consider three
more possibilities in between to explore in more detail the role
of varying levels of discounting on the structure of the optimal
policy response.

Figure 3 lists the five discount rate scenarios considered in
this analysis. This exercise provides an illustrative example of
the discount rate’s role in determining the structure of the
policy response. By comparing the optimal policy response across
the Stern (i.e., 0.10% per year) and Nordhaus (i.e., 1.5% per
year) limits, it is possible to see that in the first case policy
intervention is more decisive across both regions than policy
intervention in the second case. For instance, the policy response
with the 0.10% per year discount rate uses higher levels of carbon
taxation and technology subsides in both regions. As a result, the

environmental outcomes are also significantly different; for the
0.10% discount rate, temperature rise is kept below two degrees
Celsius throughout the entire simulation, while for the 1.15%
discount rate, temperature rise continues for over a century until
it is stabilized at∼3◦C. In this case, the cost of policy intervention
is higher for the 0.10% discount rate, but it is important to note
that in comparison to the 1.5% discount rate policy, this policy
requires to be implemented during a shorter period of time (i.e.,
135 vs. 180 years); thus, under alternative climate conditions, it is
also feasible that both policies display similar intervention costs,
or that in fact, the 0.10% discount rate policy becomes cheaper.

The uncertainty associated with the speed of temperature rise
is associated with the limitations of our understanding of the
global climate system. Each general circulation model used by
the IPCC and included in the CMIP5 ensemble uses different
assumptions and parameter values to describe the atmospheric
changes resulting in growing anthropogenic GHG emissions,
and, as a result, the magnitude of the estimated changes varies
greatly among different modeling groups. In this respect, one of
the features of EDIAM is that it uses 12 GCMs included in the
CMIP5 data ensemble to calibrate the parameters ξ, δ, β, and S0 in
Equations (1.4) and (1.6). Thus, in EDIAM, GCMs are described
as unique combinations of climate sensitivity of GHG (β) and
the capacity of the atmospheric carbon sink (δ, S0) as listed in
Table 2.

Figure 4 provides an illustrative example of how different
GCMs may lead to a different structure of the optimal
environmental policy. It shows that for a GCM that displays
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higher climate sensitivity, such as MIROC-ESM-CHEM, it is
possible that under certain circumstances, the optimal policy uses
a higher mix of carbon taxes, research subsidies, and technology
subsidies than in the case of a GCM that displays lower climate
sensitivity, likeNorESM1-M. It also shows that the environmental
outcomes between both scenarios are different: in this case, for

TABLE 2 | Estimated climate parameters using CMIP5 GCM models.

Climate scenario β ξ δ S0

MIROC-ESM-CHEM 6.13 0.010 0.00278 590

GFDL-CM3 6.11 0.010 0.00259 635

MIROC-ESM 5.93 0.010 0.00260 633

bcc-csm1-1 5.00 0.010 0.00182 916

MPI-ESM-LR 4.67 0.010 0.00161 1,042

MPI-ESM-MR 4.67 0.010 0.00161 1,045

NorESM1-ME 4.34 0.010 0.00136 1,236

MRI-ESM1 4.26 0.010 0.00130 1,294

NorESM1-M 4.13 0.010 0.00119 1,415

MIROC5 4.12 0.010 0.00119 1,417

GFDL-ESM2M 3.29 0.010 0.00071 2,403

GFDL-ESM2G 3.19 0.010 0.00063 2,695

The table lists the estimated parameters for the 12 CMIP5 climate models included in this

study; the parameters of Equations (1.4) and (1.6) are listed for each climate model. These

parameters are estimated using CO2 emission levels’ variation across representative

concentration pathways (RCPs) for each of the climatemodels in an autoregressivemodel.

both simulation runs temperature rise is successfully mitigated,
but this occurs at a higher level for climate scenario MIROC-
ESM-CHEM than for scenario NorESM1-M. It also shows that
the cost of policy intervention is unambiguously higher for
climate scenario MIROC-ESM-CHEM because although the rate
of carbon taxation is smaller in climate scenario NorESM1-M,
policy intervention lasts longer in the latter case. Evidently, these
results can change when combined with other uncertainties, yet it
offers an illustrative example of the interplay between the optimal
policy response and the different climate scenarios.

USING MODELS DIFFERENTLY THROUGH
COMPUTATIONAL EXPERIMENTATION

Considering Multiple Dimensions of Merit
Sustainability challenges often deal with multiple spheres (e.g.,
economic, ecological, technological) (Liu et al., 2013; Hull
et al., 2015); as a result, sustainability studies need to deal
with multiple, and often, opposing measures of merit. Climate
change mitigation offers a clear example of this as it requires
the consideration of different metrics to evaluate and compare
the performance of competing policy proposals. In this study,
we focus primarily on the outcome that policy intervention
has on economic and environmental conditions by the end of
the century. This aligns the scope of this work to discussions
associated with the end-of-the century temperature rise and
emission stabilization targets.

FIGURE 4 | Effect of Different Climate Scenarios on Optimal Policy Response’s Structure and Effectiveness. This figure shows temperature rise time series for two

simulation experiments. Both simulations used the same parameter values for the elasticity of substitution (i.e., 8.4) and the discount rate (i.e., 1.50% per year) but are

run for different climate scenarios: MIROC-ESM-CHEM (i.e., orange line) and NorESM1-M (i.e., green). For each simulation, the pointing arrows indicate the resulting

optimal policy as a combination of carbon taxes, research subsidies, and technology subsidies across both regions.
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From an economic perspective, we estimate the cost of
policy intervention by comparing consumption levels across
the policy intervention case and the laissez-faire economy.
Then, the higher the reduction in consumption compared
to the laissez-faire economy, the higher the costs of policy
intervention. From an environmental perspective, we consider
two metrics: the end-of-the century temperature rise level and
end-of-century CO2 atmospheric concentrations. The firstmetric
is useful for comparing policies in terms of the temperature
levels that are plausible with its implementation. The second
metric is useful to analyze whether or not a policy stabilizes
CO2 emissions such that temperature permanently stops rising.
We make this distinction because maintaining temperature rise
below a certain threshold (e.g., two degrees Celsius) does not
entail that atmospheric CO2 concentrations are also stabilized.
Without stabilization, if climate policy is lifted, temperatures will
continue rising.

Experimental Design and Case Generation
We use the elements outlined in the previous sections to
conduct several simulation experiments. The experimental
design includes a full-factorial sampling design across different
EDIAM’s parameters; this includes

• 12 climate scenarios
• 10 elasticity of substitution scenarios
• 5 discount rate scenarios.

We considered all possible combinations of these uncertain
exogenous factors for developing individual model
parametrizations, which yields a total of 600 cases. Table 3

summarizes the scope of the experimental design of this study
using the XLRM framework developed by Lempert (2003), while
emphasizing that we are dealing specifically with uncertain
stressors in the context of sustainability (i.e., XSLRM).

MACHINE LEARNING ALGORITHMS FOR
IDENTIFYING DECISION-RELEVANT
CONDITIONS

Experimental Datasets and Results
Figure 5 describes the sequence of steps we implemented to
produce the datasets used for the analysis described in this
section. For each of the steps in the process, this figure indicates
the method and general characteristics of the datasets produced.
The experimental design consisted of 5,400 optimization runs
across 600 parametrizations that vary climate parameters,
elasticity of substitution, and the discount rate. The optimization
runs estimate the optimal policy response for each of the
parametrizations, considering the restrictions of the different
policy regimes, using Byrd et al. (1995) “L-BFGS-B” method for
constraint optimization. On average, it takes 10,000 simulation
runs to converge on a solution for the optimization problem.
Thus, in total, the results described in the following sections
required∼54 million simulation runs.

Four datasets are relevant for this sequence of steps. The
experimental design dataset describes how the combination

TABLE 3 | XSLRM summary of experimental design.

Uncertain stressors

(XS)

Policy levers (L)

Climate uncertainty:

• 12 Climate scenarios

Economic uncertainty:

• 10 elasticity of

substitution scenarios

• 5 discount

rate scenarios

• P0. FWA (Future Without Action)

• P1. I. Carbon Tax [Both]

• P2. I. Carbon Tax + I.Tech-R&D[Both]

• P3. H. Carbon Tax + Co-Tech[GCF]+R&D[AR]

• P4. H. Carbon Tax+Co-Tech[GCF]+ I. R&D[Both]

• P5. H. Carbon Tax + Co-R&D[GCF]+Tech[AR]

• P6. H. Carbon Tax + Co-R&D[GCF]+I. Tech[Both]

• P7. H. Carbon Tax + Co-Tech-R&D[GCF]

System relationships

(R)

Metrics (M)

• Exploratory dynamic

integrated assessment

model (EDIAM)

• End-of-century temperature rise

• Stabilization of GHG emissions

• Economic costs of policy intervention

The main components of the exploratory analysis are grouped according to four different

categories: (1) the deep uncertainty scenario taken into account (i.e., 12 climate scenarios,

10 Elasticity of Substitution Scenarios, and 5 Discount Rate Scenarios), (2) the policy

regimes analyzed (i.e., 8 different policy regimes, (3) the system relationship that links

actions to consequences (i.e., EDIAM model), and (4) the metrics considered to analyze

the performance of different policies.

of climate and economic parameters vary across the different
optimization runs. In terms of its cardinality, there are 600
unique combinations of parameters in this dataset, identified
by unique future ids, which are combined with the 9 policy
regimes, indicated by a unique policy id. The optimal policy
response dataset describes for each of the 5,400 runs the
combination of policy parameters that solves the optimization
problem described in section Virtual Laboratories and Policy
Regimes; each of these optimal vectors is unique, since each
of the estimated variables is continuous (e.g., carbon tax rates,
subsidy rates, and R&D intensities). The simulation dataset
describes the dynamic behavior of the system under these 5,400
optimal policy vectors using 66 output variables of the EDIAM
model. Finally, in the scenario discovery dataset, we aggregate
simulation results by summarizing the dynamic behavior of each
run using an expanded set of variables that compare absolute
and relative behavior across regions and sectors. For instance, by
comparing end-time technological progress with respect to initial
conditions, technological progress in competing sectors within
regions, and technological progress across regions.

Results from the simulation runs generated by the
experimental design are shown in Figure 6. These results
are useful for highlighting some of the features of the system
and of the policy response. The figure shows that there is
ample variation with respect to the penetration levels of
sustainable energy that can be achieved through the various
policy regimes. It is possible to see that the FWA (i.e., laissez-
faire economy) results in limited penetration of sustainable
energy across both regions, and as a result, end-of-century
temperature rise levels are close to the environmental limit
(i.e., 6◦C). Figure 6 also reveals that the best environmental
outcomes are concentrated in the upper right corner of
these panes. These futures represent scenarios in which
the policy response induces a successful transition toward
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FIGURE 5 | Sequence Used for Data Production and Analysis. Blocks denote analytical steps used for producing the datasets for this analysis. The general

characteristics of the methods and datasets used in the analysis are indicated in each box.

FIGURE 6 | Example of Experiment Results across Different GCMs. Each point describes an individual future through the penetration of sustainable primary energy as

percent of total secondary energy production for the emerging region (x-axis) and for the advanced region (y-axis). The size of the points reflects the type of policy

regime, the smaller points denote policy regimes which include the FWA and the two non-GCF policies (i.e., P1 and P2), and bigger points indicate GCF-based

policies (i.e., P3, P4, P5, P6, and P7). The color legend denotes end-of-the century temperature rise; the green points describe temperature rise conditions closer to

the 2◦C target, while the red points describe temperature rise conditions closer to the environmental disaster condition of 6◦C. The figure includes four panes; each

pane displays results for a different GCMs.

sustainable energy across both regions. It is possible to see
that the non-GCF policies (i.e., P1 and P2) can achieve similar
levels of penetration of sustainable energy in both regions
than GCF-based policies (i.e., P3–P7). These results also
show that policy performance varies across GCMs in terms

of the penetration of sustainable energy and the resulting
temperature rise.

The structure of the optimal environmental policy varies
across the uncertainty space in order to meet the climate
policy targets described. This variation in the structure of the
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FIGURE 7 | Changes in Optimal Response’s Structure Across Different Elasticity of Substitution, Climate Sensitivity, and Discount Rate Scenarios. P2: I. Carbon Tax +

I. Tech-R&D [Both]. For each panel (A,B), the left panes describe changes in the structure of the optimal policy in the advanced region (AR) and the right panes

describe changes in the emerging region (ER) for the independent comprehensive policy regime (P2). The top panes show results for the individual carbon taxes, the

middle panes for R&D subsidies, and the bottom pane for technology subsidies. Uncertainty values are described using three bins; for the elasticity of substitution,

these bins are defined as low, medium: [5:8), and high: [8:10); for climate sensitivity, these bins are defined, considering the range of values presented in Table 2, as

low: [3:5), medium: [5:6), and high: [6,7); and for the discount rate, these bins are defined as low: [0, 6%), medium [6,12%), and high [12,15%). The legend of each cell

represents the mean value of the policy element for the subset of futures describe by the intersecting bins (elasticity of substitution, climate sensitivity, and discount

rate). The color legend denotes the effort level of the policy response: colors toward red denote higher effort policies; colors toward green denote lower effort policies.

optimal response has important implications for policy design
and exemplifies the richness of the experimental results. For
example, Figure 7A shows for policy P2: I. Carbon Tax + I.
Tech-R&D [Both] how the optimal response changes across two
parameters: the elasticity of substitution and climate sensitivity
to GHG. The left panes describe changes in the structure of the
optimal policy in the advanced region (AR), and the right panes
describe changes in the emerging region (ER). The top panes
show results for the individual carbon taxes, the middle panes for
R&D subsidies, and the bottom pane for technology subsidies.
The results presented in this figure show that the structure of
the optimal policy is very sensitive to the combined effect of the
elasticity of substitution and climate sensitivity: the higher the
climate sensitivity and the lower the elasticity of substitution,
then the higher the effort of the optimal policy response.

The discount rate is another important factor that influences
the structure of the optimal policy response. Figure 7B describes
changes in the structure of the optimal policy across different
scenarios of the elasticity of substitution and the discount rate.
As expected, it shows that the strength of the policy response
increases as the discount rate diminishes. However, in this case
it is possible to see that as the elasticity of substitution increases,
the influence of the discount rate in the structure of the optimal

policy diminishes. For high elasticity of substitution scenarios,
it is possible to see that the structure of the optimal policy is
insensitive to changes in the discount rate. These results highlight
the importance of regional differences in defining the structure
of optimal environmental regulation. It is possible to see that in
the emerging region carbon taxation is always equal or higher
than carbon taxation in the advanced region. In contrast, the
technology policy elements of optimal environmental regulation
are higher in the advanced region than in the emerging region.
Since technologies are developed in the advanced region, then the
optimal policy prioritizes accelerating technology development
over taxation in this region, while in the emerging region, higher
taxation creates a strong market niche for sustainable energy,
which is used more effectively by R&D and technology subsides
that accelerate the technological catching-up process.

A similar analysis for policy regime P7 “H. Carbon Tax
+ Co-Tech-R&D[GCF]” shows that under the GCF the level
of carbon taxation reduces for both regions compared to the
level of taxation in the non-cooperative policy regime (i.e., P2).
Additionally, the optimal level of effort in R&D and technology
subsidies in the emerging region is on average higher than the
optimal level of effort in the non-cooperative policy regime. This
indicates that under the GCF, it is feasible for the emerging region
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to make higher investments in R&D and technology subsidies
and reduce the rate of taxation. Similarly, for the advanced
region, these results show that it is possible to reduce the level
of carbon taxation by co-funding R&D and technology subsidies
in the emerging region. Finally, the results show that in the
most adverse scenarios under the GCF (i.e., low elasticity of
substitution and high climate sensitivity), optimal environmental
regulation requires higher R&D and technology subsidies in the
emerging region than in the advanced region.

Machine Learning Algorithms for
Describing Vulnerability Conditions
The previous section describes general characteristics of the
experimental datasets and insights of the computational
experiment. Yet, these results do not provide a systemic
understanding of how the interaction of the set of stressors
considered in the experiment affect the structure and
effectiveness of optimal climate policy response under
uncertainty. To address this, we follow two steps. First, we
classify experimental outcomes with respect to whether or not
specific policy objectives are met. Second, we use non-parametric
clustering analysis for understanding the combination of factors
that lead to meeting these objectives. We consider an outcome
is not vulnerable when the temperature target (i.e., 2◦C) and/or
the stabilization targets are met. This suggests that there are two
outcome types of interest in this experiment:

1. Simulations in which the 2◦C end-of-century temperature rise
target is met

2. Simulations in which the 2◦C end-of-century temperature rise
target and CO2 stabilization are met.

Table 4 presents the performance statistics of different policy
regimes across the 600 parametrization cases considered for
these two outcome types. As expected, the FWA does not meet
any of the climate change objectives. It also shows that for
the independent carbon tax policy (i.e., P1) in the majority
of simulations, it is possible to keep the temperature rise
below 2◦C, but in none of these cases is this policy able
to stabilize CO2 emissions. This shows that this policy is
effective in delaying temperature rise but is less effective at
inducing successful decarbonization across regions. In contrast,
policies that complement carbon taxes with R&D and technology
subsidies are able to meet the CO2 stabilization targets in a higher
number of futures. It is possible to see that the stabilization
targets are met in less than one third of the futures considered.
In this respect, some of the GCF-based policies (i.e., P4 and P7)
are slightly more effective than the non-GCF policy (i.e., P2) in
meeting the stabilization target.

For the second step, we use the algorithm PRIM (Patient
Rule Induction Method) (Friedman and Fisher, 1999), a
non-parametric bump hunting classification algorithm, to
quantitatively describe vulnerability condition of different
policies. In particular, we use PRIM in the context of the scenario
discovery method developed by Bryant and Lempert (2010).
Thus, for each policy regime, we classify simulation outcomes
into two cases of interest (Is): (1) cases in which the policy

TABLE 4 | Performance of optimal policy response across different policy regimes.

Policy name Number (percentage) of futures meeting

the end-of-century climate policy target

Temperature rise below 2◦C

CO2 stabilization

achieved

CO2 stabilization not

achieved

P0. FWA 0 (0) 0 (0.0)

P1. I. Carbon Tax [Both] 0 (0) 375 (62.5)

P2. I. Carbon Tax + I.

Tech-R&D[Both]

153 (25.5) 398 (66.3)

P3. H. Carbon Tax +

Co-Tech[GCF] + R&D[AR]

130 (21.7) 344 (57.3)

P4. H. Carbon Tax +

Co-Tech[GCF] + I. R&D[Both]

153 (25.5) 391 (65.2)

P5. H. Carbon Tax +

Co-R&D[GCF] + Tech[AR]

130 (21.7) 395 (65.8)

P6. H. Carbon Tax +

Co-R&D[GCF] + I. Tech[Both]

145 (24.2) 415 (69.2)

P7. H. Carbon Tax +

Co-Tech-R&D[GCF]

165 (27.5) 402 (67.0)

The table summarizes the performance of each policy across the 600 parametrizations

considered for the four outcome types. The numbers (percentage) of parametrization

meeting the different end-of-century climate policy targets are listed under each column.

target is met and (2) cases in which the policy target is not
met. Then, PRIM is used to parse the simulation database
into concise clusters that describe dimensional conditions under
which policies do not meet targets. This is done through the
estimation of recursive peeling trajectories, as class types often
require more than one cluster to be fully described. This implies
that once an initial cluster is chosen, the algorithm removes all the
data points from the dataset inside the first cluster and replicates
the peeling/pasting process with the remaining data.

Two statistical measures are used to describe the suitability
of a decision relevant cluster. Coverage (Equation 2) measures
how completely the cases defined by cluster B cover the cases of
interest (Is); in this study, this is the percent of total vulnerable
cases that are captured by the cluster. Density (Equation 3)
measures the purity of the scenarios; in this study, this is
the percent of cases within the cluster that are vulnerable.
Interpretability of these cluster is an important subjective
measure; generally, the fewer dimensions used by the cluster, the
higher its suitability for the analysis.

Coverage =

∑

xi∈B
yi
′

∑

xi∈xI
y
′

i

(2)

Density =

∑

xi∈B
yi
′

∑

xi∈B
1

(3)

where yi
′ = 1 if xi ∈ Is and yi

′ = 0 otherwise.
We first use scenario discovery to understand the cases in

which end-of-century CO2 stabilization at 2◦C targets is not met.
These are futures in which CO2 stabilization is not achieved
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FIGURE 8 | PRIM Boxes Describing Decision Relevant Scenarios. Filled circles show non-vulnerable cases, where the CO2 stabilization and temperature rise targets

are met, and open circles indicate futures in which one of these two targets is not met. These futures are plotted across the two uncertainty dimensions that are found

to be most relevant using PRIM: (1) the elasticity of substitution and (2) the climate sensitivity to GHG.

and in which end-of-century temperature rise is above 2◦C.
Figure 8 shows the results of this clustering analysis. The figure
shows a series of scatter plots of all futures for different policy
regimes. Filled circles show non-vulnerable cases, where the CO2

stabilization and temperature rise targets are met, and open
circles indicate futures in which one of these two targets is
not met. These futures are plotted across the two uncertainty
dimensions that are found to be most relevant using PRIM:
(1) the elasticity of substitution and (2) the climate sensitivity
to GHG. High values of the elasticity of substitution describe
scenarios in which the technologies across sectors are highly
substitutable, which are more favorable for climate policy. Low
values of the elasticity of substitution denote scenarios in which
sectors are less substitutable, which makes it harder to move
away from fossil energy. For the case of climate sensitivity, high
values describe climate scenarios in which global temperature
rises rapidly with growing CO2, thus making it harder to
keep temperature levels below the 2◦C target. Low values are

associated with climate scenarios for which global temperature
rises less abruptly with growing CO2 emissions. Finally, the
shaded regions highlighted in yellow and blue were selected
using scenario discovery to describe these sets of vulnerable
futures. Table 5 provides a detailed description of the boundary
conditions of each scenario box, as well as the corresponding
coverage and density statistics that describe to which extend these
scenario boxes adequately capture the vulnerable conditions of
each policy.

The results presented in Figure 8 and Table 5 show
that the vulnerability region varies slightly across the
different environmental policy regimes. For the independent
comprehensive policy (“P2 I. Carbon Tax+I. Tech-R&D[Both]”),
the vulnerability region is defined solely by the elasticity of
substitution. The optimal policy under this regime fails to meet
the stabilization target in all scenarios that do not display a high
elasticity of substitution. For the other three policy regimes,
the vulnerability region is described by both the elasticity of
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TABLE 5 | Scenario discovery analysis summary results for stabilization target.

Policy name Scenario

box

Scenario description Coverage Density

P2. I. Carbon Tax + I. Tech-R&D[Both] Box1 • Elasticity of substitution < 9.0 99% (445/447) 93% (413/447)

P4. H. Carbon Tax + Co-Tech[GCF] + I.

R&D[Both]

Box1 • Climate sensitivity to GHG > 4.5 53% (237/447) 80% (190/237)

Box2 • Elasticity of substitution < 8.0

• Climate sensitivity to GHG < 4.5

45% (202/447) 95% (182/202)

P6. H. Carbon Tax + Co-R&D[GCF] +

I.Tech[Both]

Box1 • Elasticity of substitution < 9.5

• Climate Sensitivity to GHG > 4.0

86% (392/455) 87% (341/392)

Box2 • Elasticity of substitution < 7.6

• Climate sensitivity to GHG < 4.0

13% (60/455) 100% (60/60)

P7. H. Carbon Tax + Co-Tech-R&D[GCF] Box1 • Elasticity of substitution < 9.5

• Climate sensitivity to GHG > 5.5

30% (130/435) 97% (126/435)

Box2 • Elasticity of substitution < 8.0

• Climate sensitivity to GHG > 5.5

70% (305/435) 97% (296/305)

The table summarizes the statistical properties (i.e., coverage and density) of the scenario boxes describing the vulnerability conditions of each policy regime. The quantitative thresholds

defining each scenario box are listed.

substitution and climate sensitivity. Scenario box 1 describes
“high climate sensitivity futures,” while Scenario box 2 describes
“medium-to-low elasticity of substitution scenarios.” Differences
in the vulnerable region exists between these three policy
architectures, namely, that the comprehensive GCF policy (“P7.
H. Carbon Tax + Co-Tech-R&D[GCF]”) shows a greater area of
success than the other three policy architectures.

These results also show that out of the four uncertainties
considered in this analysis, (1) elasticity of substitution, (2)
climate sensitivity, (3) atmospheric carbon sink capacity, and (4)
the discount rate, only the first two determine whether or not the
optimal policy achieves the objective of stabilizing CO2 emissions
at sustainable levels before the end of the century. Arguably, out
of these two factors, the elasticity of substitution plays a more
fundamental role in determining the vulnerability of the policy
response, as all scenarios that display medium to low elasticity
of substitution are vulnerable across all policy regimes, while
high climate sensitivity scenarios induce vulnerability at high
elasticity of substitution scenarios for three out of the four policy
regimes considered.

On the other hand, the end-of-century 2◦C temperature rise
target is met in a greater number of futures than the stabilization
target. This implies that the former is a more achievable
target than the later. Certainly, meeting the stabilization target
would be highly beneficial as this would imply that climate
change would not be a prevailing public policy problem
after the end of the century; however, the results show that
this target is met only under very favorable economic and
environmental circumstances.

DISCUSSION

Key Lessons From the Case Study
The results presented in the previous sections show that the
combined application of multiple computational intelligence
tools produces new insights andmore detailed information about

the effectiveness of different climate policy regimes. First, the
use of the EDIAM model allows for the joint consideration
of multiple regions and the interaction between the economy,
the environment, and optimal climate policy. As a result, it is
possible to analyze climate change policy multidimensionally
in terms of both its ability to mitigate temperature rise and
its economic cost (or benefit). Second, by using the EDIAM
model in a computational experimentation setting, we show that
an uncoordinated carbon tax is the highest cost policy in the
majority of cases and that interregional cooperation through
the GCF can sometimes be more costly than independent
comprehensive climate policy. Our experiment also highlights
that there are noticeable differences between policies in terms of
the period of time required to achieve stabilization (cooperation
between regions generally induces decarbonization faster than
non-cooperation). However, we also find that for a considerable
number of futures, policy intervention needs to remain in place
for as long as 300 years.

Through the application of data visualization techniques, we
show that it is possible to describe the dynamics of optimal
climate regulation. It doing so, we find that regional differences
play a significant role in determining the structure of the
optimal policy response. Particularly, we show that in emerging
economies carbon taxation is always equal or higher than carbon
taxation in advanced economies. In contrast, the technology
policy effort of climate policy is stronger in advanced economies
than in the emerging economies. Since mitigation technologies
aremainly produced in advanced nations, then the optimal policy
prioritizes accelerating technology development over taxation in
this region, while in the emerging region, higher taxation creates
a strong market niche for sustainable energy diffusion, which
is used more effectively by R&D and technology subsidies that
accelerate the technological catching-up process.

We demonstrate that it is possible to use clustering algorithms
to quantitatively identify key drivers of vulnerability of climate
policy across various objectives. We find that out of the four
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FIGURE 9 | Hierarchical Relationship Between Computational Tools.

stressors considered, (1) elasticity of substitution, (2) climate
sensitivity to GHG emissions, (3) discount rate of economic
agents, and (4) carbon sink capacity, only the first two determine
whether or not the optimal policy achieves the objective of
stabilizing CO2 emissions at sustainable levels before the end of
the century. Considering the relevance of the debate about the
appropriate value of the discount rate in climate policy analysis,
this finding, which shows that there are more critical drivers of
climate policy vulnerability, exemplifies very well the benefits
of combining different computational tools for decision analysis
in complex systems. Finally, we show that for the independent
carbon taxes policy (i.e., P1), in the majority of cases, it is possible
to keep the temperature rise below 2◦C, but in none of the cases,
this policy is able to stabilize CO2 emissions before the end of
the century.

A Hierarchy of Computational Tools for
Analyzing Sustainability Challenges
The combined application of various computational tools to this
case study yields lessons with respect to their hierarchical relation
for analyzing sustainability challenges amid complexity and
deep uncertainty. Figure 9 describes this hierarchy schematically;
each block represents an analytical element to be integrated
in the analysis of sustainability challenges, and arrows indicate
information flows in this hierarchy.

As shown in this case study, the first layer in this hierarchy
englobes optimization and Integrated Assessment Models
(IAMs). The combination of both perspectives is conducive
for analyzing sustainability challenges. IAMs provide the
required formalism and tractability for taking into consideration
sustainability interdependencies across spheres. Optimization
provides the analytical framework needed for formalizing policy
options in the light of sustainability objectives. This requires
adequate cost estimates of competing alternatives, formalization

of decision restrictions, and sustainability performance metrics
for all systems considered. The second layer pertains to the
integration of the models produced in the first layer with
exploratory modeling (Bankes, 1993; Kwakkel, 2017). The
intention of using exploratory modeling is to produce, for
each parametrization case, a vector of optimal action. This
yields a rich database that maps out changes in optimal
action across the often vast ensemble of cases considered.
The third layer of this hierarchy connects with the second
by the direct application of data visualization and machine
learning techniques. Machine learning techniques, in particular
clustering techniques and decision rule classifiers, can be used to
identify statistically (a) vulnerability conditions of sustainability
objectives across policy alternatives and (b) critical thresholds
for triggering different actions. Data visualization techniques
can be particularly useful to track down changes of the
optimal policy response across the parameterization space and
to create decision-support tools to be used in participatory
planning exercises.

This integration of computational tools is useful because
the statistical evidence produced through the integration of
these tools leads to a more nuanced understanding of the
conditions under which different policy alternatives are more
appropriate for achieving sustainability goals. For example,
Molina-Perez et al. (2019) apply a similar approach for analyzing
sustainability water challenges amid climate, economic, and
technological deep uncertainty. In their analysis, the authors
integrate econometric, water, and climate modeling tools to
develop an IAM, which is combined with an optimization
framework that assesses how to best expand the water
infrastructure of Monterrey, Mexico. Their results show that
it is possible to develop a robust expansion strategy that
meets systems’ reliability and environmental restrictions without
exposing the city to large financial and operational risks. Such
strategy is comprised of a diversified collection of projects that
considers both conventional and non-conventional expansion
strategies and that postpones large infrastructure investment
until more information about climate and technological change
becomes available.

There are multiple avenues for future research with respect
to integrating multiple computational tools for analyzing
sustainability challenges. On the one hand, this line research
will greatly benefit from standard statistical procedures for
designing experimental designs that reduce the risks of biases
and increase precision of estimations. This is challenging as
each one of these tools (i.e., simulation models, optimization,
and machine learning algorithms) needs to be calibrated,
trained, and parametrized. In current studies, this is mainly
done ad hoc and there is little evidence describing, for
example, how parameter selection in an optimization routine
impacts statistical inference of a classification algorithm; the
same is true for experimental designs in exploratory modeling
exercises. On the other hand, there is ample room for
studying, from a behavioral perspective, how to best transfer
findings of these studies to non-specialized audiences. For
instance, experimental evidence comparing the impact on
knowledge transfer of different combinations of computational
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tools could shed light on the most appropriate approach
for integration.

CONCLUSIONS

This paper applies DMDU methods to structure an analysis
of global climate change mitigation and to demonstrate
that the combination of multiple computational tools
for analyzing this sort of sustainability challenges leads to
richer analytical insights than those produced by traditional
monodisciplinary studies.

The scope of the computational experiment in the study
considers nine different policy regimes and 600 different
optimization cases. The ensemble of cases combines four sources
of uncertainty: elasticity of substitution, discount rate, climate
sensitivity to GHG, and atmospheric carbon sink capacity. The
performance of the different policy regimes is evaluated in terms
of the end-of-century conditions. Particularly, the performance
of each policy regime is evaluated in terms of its capacity
to meet two climate change sustainability objectives: (1) the
stabilization of CO2 emissions and (2) the 2◦C temperature
rise target.

The analysis shows that the structure of optimal
environmental regulation changes markedly across the
uncertainty space. The results show that the optimal
policy response is most affected by climate sensitivity
uncertainty and the elasticity of substitution uncertainty.
In particular, the strength of the optimal policy response
is directly proportional to the level of climate sensitivity
to greenhouse gas emissions and inversely proportional
to the elasticity of substitution between the sustainable
energy and fossil energy sectors. We also show that the
discount rate does affect the structure of the optimal policy
response, but its influence is less significant when compared
to the influence of climate sensitivity and the elasticity
of substitution.

The comparison of GCF-based policy regimes and non-
GCF policy regimes shows that the GCF does affect the
structure of climate policy. These results show that under the
GCF the level of carbon taxation reduces for both regions
compared to the level of taxation in the non-cooperative
policy regimes. Also under the GCF, the optimal level of effort
in R&D and technology subsidies in the emerging region is
on average higher than the optimal level of effort in the
non-cooperative policy regime. This indicates that under the
GCF it is feasible for the emerging region to make higher
investments in R&D and technology subsidies and reduce
the rate of taxation. Similarly, for the advanced region it
is shown that it is possible to reduce the level of carbon
taxation by co-funding R&D and technology subsidies in the
emerging region.

We use machine learning algorithms to analyze the
experimental database. These results show that the objective
stabilizing CO2 emissions below 2◦C before the end of the
century is rarely met. Two decision relevant clusters describe

this type of vulnerability: (1) high climate sensitivity to
greenhouse gas emissions and (2) medium-low elasticity of
substitution. In contrast, the 2◦C temperature rise target
without CO2 stabilization is met in a greater number of
cases. For both types of vulnerability, the role of discount
rate in defining the vulnerability conditions is found
to be minimal.

This analysis shows that by integrating optimization, complex
simulation models, and machine learning algorithms, it is
possible to quantitatively identify key drivers of vulnerability
of climate change mitigation policies. Drawing on lessons
from this case study, we propose an analytical hierarchy
of computational tools that can be applied to other
sustainability challenges. The first layer of this hierarchy
consists of coupling IAMs with optimization to capture
sustainability interdependencies across systems and path
dependencies of optimal policy decisions. The second
layer proposes to use exploratory modeling (Bankes, 1993;
Kwakkel, 2017) to deal with deep uncertainty. Finally, the
third layer of this hierarchy connects with the second by
the direct application of data visualization and machine
learning techniques for identifying relevant decision clusters,
characterizing vulnerability conditions, and identifying critical
sustainability thresholds.
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