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Abstract
Quantum machine learning is a rapidly evolving field of research that could facilitate important
applications for quantum computing and also significantly impact data-driven sciences. In our
work, based on various arguments from complexity theory and physics, we demonstrate that a
single Kerr mode can provide some ‘quantum enhancements’ when dealing with kernel-based
methods. Using kernel properties, neural tangent kernel theory, first-order perturbation theory of
the Kerr non-linearity, and non-perturbative numerical simulations, we show that quantum
enhancements could happen in terms of convergence time and generalization error. Furthermore,
we make explicit indications on how higher-dimensional input data could be considered. Finally,
we propose an experimental protocol, that we call quantum Kerr learning, based on circuit QED.

1. Introduction

Quantum machine learning, i.e. combining machine learning with the computational power of quantum
devices, is an exciting and emerging direction for modern information technology [1–4]. In the present noisy
intermediate-scale quantum era [5], there has been significant progress on quantum machine learning based
on variational quantum circuits [6–15]. However, it is still not completely clear, both in theory and practice,
if and how a true quantum advantage relative to completely classical-computer based approaches will be
achieved [15, 16].

Over several years in classical machine learning, kernel methods have been developed and applied to
address numerous problems [17]. A non-linear machine learning problem could ideally be described by
linear models in a sufficiently high dimensional Hilbert space using these kernel methods. In the context of
classical machine learning, the corresponding Hilbert space of a given kernel is abstract, whereas in the
quantum computing setup, the Hilbert space could be physical—such as the state vector space of a quantum
device [18]. Complex quantum systems could produce complicated enough kernels that are hard to evaluate
using classical computers, providing a potential regime of quantum advantage in quantum machine learning
[3].

Now, how can we produce complicated kernels in a quantum system? In the quantum kernel method, the
kernel is evaluated from a quantum measurement. For instance, if we consider a Hamiltonian with the real
time evolution, H(t), one could construct the kernel as

K(x,x ′) =

∣∣∣∣〈ψ ∣∣∣∣T̄exp

[
i

ℏ
´ T ′

0 H(t ′)dt ′
]
×Texp

[
− i

ℏ
´ T
0 H(t)dt

]∣∣∣∣ψ〉∣∣∣∣2. (1)
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Here, starting from |ψ⟩ and evolving with the Hamiltonian H(t) during over times T and T′ respectively, the
inner product of two quantum states is measured. T denotes time ordering in quantum mechanics. The
more complicated the Hamiltonian is, the harder it is for a classical computer to simulate. In equation (1),
the kernel K is a matrix where the matrix elements are specified by the input data points, x and x ′. The
vectors x and x ′ could be constructed from parameters of the Hamiltonian or the evolution time.

2. Model setup

In this paper, we consider a single-mode quantum system with Kerr non-linearity that could potentially
provide computational benefits compared to its classical counterparts. Such systems can be easily realized in
circuit quantum electrodynamics (QED) experiments where the Kerr non-linearity can be obtained from
Josephson junctions or the kinetic inductance of a superconducting resonator [19–21]. We propose and
describe an experimental realization in the supplemental material (SM). The effective Hamiltonian of the
considered system can be described as,

H=Hf +HI ,Hf =H0 +Ht
H0

ℏ
= ωm

(
b†b+

1

2

)
,
Ht

ℏ
=Ω

(
beiωLt + b†e−iωLt

)
,
HI

ℏ
=−Kerrb

†b†bb . (2)

For our demonstrative examples, we restrict ourselves to three-dimensional inputs and treat ωm and Kerr as
constants. The input data is thus defined as a real vector x= (x)3i=1 = (Ω,ωL,T). Ω and ωL standard for the
energy and the frequency of the laser, and T means the evolution time. All of them are tunable in the
experimental devices.

Depending on the magnitude of Kerr a few regimes exist that warrant some discussion. When the Kerr
non-linearity is turned off, the system Hamiltonian reduces to a quadratic form in the rotating frame (The
precise procedure of the rotating frames is summarized in the supplementary materials, where we transform
the original Hamiltonian into the rotating basis, and the Hamiltonian only has terms as b†ger and b, the
quadratic Hamiltonian, which could be equivalently represented in q (location) and p (momentum).). If we
turn on the Kerr non-linearity and when Kerr is much smaller than Ω, the kernel could be predicted by
perturbation theory (see SM for detailed calculations). On the other hand, when Kerr is much larger than Ω,
the non-linear resonator can be approximated as a qubit with negligible excitations at energy levels higher
than the first excited state (see SM). However, for a general Kerr in the regime of Kerr/Ω∼O(1), we do not
have analytic predictions and the system must be evaluated on a quantum system or simulated using a
classical computer.

3. Quantum enhancement

The Kerr non-linear quantum system considered in this work has some inherent advantages that imply
quantum enhancement. Here, we use the word ‘quantum enhancement’ to indicate benefits in computation
provided by the Kerr non-linearity; this is not the same as ‘quantum advantage’ determined by the rigorous
complexity theory statements and practical demonstrations. However, a few complexity-related arguments
are presented in SM. A few possible inherent advantages of our Kerr system are discussed next.

First, although in the bulk of our paper, we treat Ω as a constant, we could make it time-dependent. For
the time-dependent Ω(t), it is shown that the Hamiltonian in equation (2) could simulate universal quantum
computing in polynomial time, and the whole class BQP [22], even for small Kerr couplings. Thus, we expect
that a combination of time-dependent Ω(t) and Kerr could provide further quantum enhancements.

Second, although the bulk of our paper is about single modes, we briefly introduce and discuss
multimodes. A multimode Hamiltonian in our circuit QED setup will include several free bosonic modes
that are interacting with another Kerr mode. Through the coupling, those free modes will have more
complicated dynamics, and we expect that it might present stronger quantum enhancements. An analog of
the multiple mode system will be a zero-dimensional λϕ4 quantum field theory on the lattice with the system
size N (note that the Kerr term is also quartic), where we have the theoretical predictions when the bare
coupling λ is either zero or infinity. The non-perturbative corrections will happen around the critical point,
and the strong coupling regime, where we have a Z2 symmetry which is spontaneously broken, and we
expect a quantum speedup to simulate the non-perturbative dynamics [23–25].

4. Kernel properties and statistics

The property of the kernel function K, or more precisely the neural tangent kernel (NTK) KH = K2 of the
linear model (see SM), plays an important role in the performance of the machine learning algorithm. To
discuss and demonstrate the quantum enhancement achieved by Kerr non-linearity, we first create an
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Figure 1. Kernel statistics when turning on Kerr non-linearity. We generateO(100) data vectors when evaluating the kernel
statistics using the perturbation theory (red), andO(10) data vectors when evaluating the kernel statistics using the numerical
exact simulation with 100 truncated bosonic energy levels (blue). As evidence of where nontrivial Kerr coupling complexifies the
kernel, we (a) count the number of eigenvalues of KH that are larger than 10−7 (the kernel effective dimension) when turning on
the Kerr coupling, and (b) evaluate the maximal eigenvalues of KH depending on Kerr. Note that when Kerr ⩾O(0.1)MHz× 2π,
we start entering the regime of non-perturbative dynamics where perturbative theory predictions are not trustworthy.

arbitrary kernel matrix by specifying the associated parameters – Ω, ωL, T, ωm, Kerr. We randomly generate
the input data x= (Ω,ωL,T) through uniform distributions within experimentally feasible data range. We
set the data range from (0,0,0) to

(
Ωrange,ω

range
L ,Trange

)
∼ (300MHz× 2π,10GHz× 2π,0.05µs). Moreover,

we fix ωm at around 10GHz× 2π which is typical for a superconducting microwave resonator. Kerr is treated
as a control parameter to understand potential quantum enhancement.

We assess the performance of our proposed Kerr kernel based on the theory of the kernel method [17] and
the NTK theory for linear models [15, 26–33]. Note that, we use the traditional quantum kernel methods to
solve the problem that is similar to the support vector machine with continuous variables, but we use NTK
theory as a tool to make predictions about the gradient descent dynamics in linear regression. NTK theory is
a theory for explaining wide neural networks, which could be deep but the ratio of depth to width should be
small. In the large-width limit, the gradient descent dynamics of the neural networks will coincide with the
kernel method, so it is also called the kernel limit. In our work, we directly use a linear model (namely, the
kernel method), so the square of the NTK is equal to the traditional quantum kernel. Moreover, better kernels
will have flatter eigenspectra with more non-trivial kernel eigenvalues, which will lead to faster convergence
speed [33] (see discussions in SM) and less generalization error for good enough alignments [34–38].

In figure 1, we study the change of the kernel eigenspectra when turning on the Kerr coupling. We
measure the complexity of the kernel by looking at the kernel effective dimension (the number of eigenvalues
that are not small, where we set the criterion to be>10−7). Since the kernel is normalized by the diagonal
matrix element to be no larger than 1, we define the criterion to be 10−7 with respect to the norm of the
kernel, which is also the numerical accuracy of our calculations. As shown in figure 1, we find that when we
turn on the Kerr coupling toward the non-perturbative regime, the kernel spectra have the tendency to be
flatter, inferred from the increasing kernel effective dimension. This suggests that better performance can be
achieved in generic numerical optimization experiments for larger Kerr non-linearity. In fact, a flatter
spectrum means that the distribution has longer tails toward the higher values of the NTK eigenvalue
parameters, which might indicate faster convergence and less generalization error for sufficient kernel
alignments, the inner product between kernel predictions and the target functions [34–38].

Analyses of kernel properties suggest that a non-zero Kerr might generically lead to better performance in
supervised learning tasks. Our detailed perturbation analysis for leading order of Kerr, shown in
supplementary materials, is well-tested through numerics and provides reasonable predictions in the
perturbative regime of Kerr. The perturbation analysis corroborates our findings from numerical
simulations—analytic formulas obtained from the analysis match with numerical simulations of our bosonic
quantum systems up to a given truncation. In figure 2, we verify the validity of our perturbation theory
prediction by comparing it with the numerical simulation for truncated Hilbert space dimensions. Kt and Ke

represent the value of matrix elements obtained from theory and simulations respectively. The relative error
is negligible in most cases.

5. Supervised learning and gradient descent

We next focus on an actual machine learning task to discuss and demonstrate the quantum enhancement
achieved by Kerr non-linearity. Consider a simple support vector machine model where (xα̃,yα̃) represent
the corresponding input-output pairs. α̃ denotes the index of data from the training setA. In a supervised
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Figure 2. The statistics of the relative error of matrix elements |(Kt −Ke)/Ke| for the perturbation theory prediction of the
kernel (Kt) and the numerical simulation (Ke) amongO(100) randomly generated data inputs x (the red points). We set
Kerr =O(0.01)MHz× 2π.

Figure 3.We perform 30 different gradient descent processes with a fixed learning rate 10−3, by logarithmically increasing Kerr

from 0 toO(103)MHz× 2π. The plots show the relative residual training error |ε(t)/ε(0)| depending on the iteration step t (0
to 500), in the eigenvector direction of K with the largest kernel eigenvalue. Theory (see SM) shows that this plot is independent
of the choices of the supervised learning label y.

learning setting, while training, a predictive model is developed using (xα̃,yα̃). Subsequently, predictions
(zδ) can be obtained using this model:

zδ = z(xδ) =
∑
α̃∈A

θα̃K(xα̃,xδ) , (3)

where K is the kernel, xδ is a general input and δ denotes the index of data from the whole input data setD
(so we haveA⊂D), and θα̃ is a trainable variable. Ideally, in a quantum kernel method [18], K is evaluated
using quantum measurements, but here we will utilize numerical simulations and theoretical arguments to
demonstrate quantum enhancement achieved by the Kerr kernel.

For our randomly generated x, we assign them with one-dimensional outputs y(x). The residual training
error ε(x) = z(x)− y(x), where z(x) is the kernel method prediction, enters in the formula of the
mean-square loss function L= 1

2

∑
x ε

2(x). We use the gradient descent algorithm to minimize L. In the
kernel method, the optimization process is exactly solvable, and the decay of the residual training error is
exponential when the learning rate is small, and the decay rate can be predicted by kernel eigenvalues
(see SM).

In figure 3, we perform different gradient descent processes for increasing Kerr. We find that the
increasing Kerr non-linearity will generically accelerate the gradient descent dynamics, consistent with our
findings of kernel eigenspectra (see SM).

6. Generalization error

Another important metric for quantifying the performance of machine learning models is the generalization
error. As an example, we split half of the data as the training set, and we evaluate the loss function on the
remaining half as the test set after we train the model. We consider learning a function y(x) =

∑3
i=1 sin

2(x2i )
instead, where our time T is rescaled to beO(1) and other components in T are set by dimensional analysis
accordingly. Noise with the standard deviation 0.1 is introduced in all the instances of the task labels in B. In
figure 4, we find that generalization error has non-trivial behavior for growing Kerr non-linearity, and for
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Figure 4. Evaluating the algorithm performance through the generalization error. We set the training set T to be the first half of
the previous training setA, and we denote the second half as the test set B. We evaluate the generalization error using
LB = 1

2|B|
∑

x∈B ε(x)2 for different Kerr coefficients. Noises with standard deviation 0.1 is introduced in the label y of the test

set B.

large Kerr values in the non-perturbative regime, it decays significantly. According to references [34–38],
generalization errors could be related to NTK eigenvalues, and the kernel method is generalized well from
good enough alignments. Thus, our finding provides good evidence that quantum Kerr learning will provide
extra enhancement in algorithm performances.

Moreover, it might be worth noticing that other studies [39, 40] show related quantitative methods for
predicting the generalization error for quantum machine learning methods. In [39], it is shown that higher
entropies in the kernel spectra might lead to worse generalizations in quantum machine learning. Our results
are indeed consistent with such a theory, since the distribution of the kernel eigenvalues will lead to better
generalization errors only when one has a good alignment between the target and the data. The kernel
alignment [41] is an inner product between the kernel in our assumption and the target function we want to
fit and higher alignment will indicate better performance in generalization [34, 41]. Intuitively, one could
understand it as the following. If we have bad alignments between the target function we want to fit and the
data, then the loss function landscape will be sharp for large kernel eigenvalues (especially when we consider
the mean square error, and in this case, the (non-zero) NTK eigenspectra are the same as the (non-zero)
Hessian spectra, as shown by the singular value decomposition). Otherwise, flatter higher eigenvalues will
lead to better generalizations, since there is more space to move around the local minima. Perhaps the
condition among NTKs, alignments, and generalization errors could be refined by entropies, which is closely
related to a potential information bottleneck theory in quantum machine learning [42]. Finally, we
emphasize that in our simulation, we do not consider quantum noises during sampling. However, one can
still speak about the noise due to the randomness of the sampling from the input data distribution. More
details are presented in the SM.

7. Higher dimensions

Regression in higher dimensions can be performed by using two quantum systems instead of one, each
encoding a subset of the data,

K =

∣∣∣∣〈ψ ⊗ϕ

∣∣∣∣T̄exp

[
i

ℏ
´ T ′

0 H(t ′)dt ′
]
×Texp

[
− i

ℏ
´ T
0 H(t)dt

]∣∣∣∣ψ ⊗ϕ

〉∣∣∣∣2 , (4)

where we have assumed that we initially start in a product state. H(t) could, again, be a general Hamiltonian.
If H(t) includes terms that couple the two subsystems, |ψ⟩ and |ϕ⟩, this could potentially create
entanglement between the two systems, increasing the complexity and making it harder for a classical
computer to compute. It is also interesting to look at the case whenH(t) does not couple the two subsystems.
For example, the Hamiltonian could represent two uncoupled Kerr resonators as

H(t) =H⊗ I+ I⊗H, (5)

where H is the Hamiltonian described in equation (2) and I is identity. In this initially unentangled and
uncoupled example, our kernel reduces to a Hadamard product of the two uncoupled kernels,

K = Kα ◦Kβ , (6)

5
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where Kα (Kβ) is the single-system Kerr kernel discussed in previous sections, and the subscript (α,β)
represents two independent subsystems. Because kernels are symmetric, positive definite matrices, we can
bound the properties of the eigenvalues of K using the spectra of K. For example, we have the following
bound on the spectral radius, ρ, of the product kernel [43]

ρ(K)⩽ ρ(Kα)ρ(Kβ). (7)

This bound is known to be rather loose, and tighter bounds have been derived [43]. As shown in figure 1, the
maximum kernel eigenvalues of the single system grow with increasing Kerr. For multiple unentangled and
uncoupled systems, we can expect that the maximal eigenvalues of this product kernel grow faster, leading to
increased performance in higher-dimensional data sets compared with the non-Kerr kernel. This can be
extended to the product of many kernels, allowing for the learning of arbitrary dimensional data with
collections of single oscillators. It is likely that the addition of entanglement, through a Hamiltonian term
that couples the various systems, will further increase the performance [11].

8. Conclusion and outlooks

Our paper opens up a novel direction by exploring the potential of quantum machine learning through
circuit QED devices with non-trivial Kerr non-linearity. We find theoretical and numerical evidence where
non-trivial Kerr coupling could significantly enhance the performance of the quantum kernel method, based
on solid evaluations of kernel statistics and numerical optimization experiments. We strengthen our claims
by applying the NTK theory in machine learning, arguments from the theory of quantum complexity, and
generalizations toward higher dimensions. Here, we suggest the following directions for future research.

(a) Experimental implementation. It will be interesting to implement the proposal in our paper in the
laboratory. When working with actual hardware, measurement noise and errors need to be considered.
A combined design between theory and experiments could be obtained based on the theory of the
kernel method, including trade-offs among the learning rate, the experimental precision for estimating
the residual training error ε, and the number of gradient descent steps we could perform in the
laboratory. In addition, the effect of dissipation and decoherence of the non-linear mode deserves future
investigation. In experiment, the evolution time of the quantum state should be controlled to be much
shorter than the coherence time of the Kerr mode in order to maintain good quantum coherence.

(b) Extensions to multiple modes. One could generalize the above work to multiple modes [21, 44], where
we expect the coupling between different bosonic modes will strengthen the complexity of the kernel. It
will be interesting to see if our approach will realize the power of multimode devices toward hard
problems in quantum machine learning.

(c) Theoretical considerations. It will be interesting to explore further the complexity foundations of our
claims. The argument about the Kerr non-linearity and complexity, although promising, is not proven
rigorously. A more solid statement about complexity might deepen our understanding of the
algorithmic potential of the Kerr non-linearity.
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