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ABSTRACT 
 

Nutritional starvation is a growing area of research into development of cancer therapy. Within the 
vast amount of positive research findings in starvation trials, there have been weaknesses in some 
of the systems utilized. Because such weaknesses are taken as adverse points that must be well-
thought-out and avoided, such negative effects have been sought from the literature and presented 
in this work. This mini-review can then be a suitable guide for researchers and clinicians to either 
avoid situations where the growth of certain cancer cells is enhanced by certain forms or modes of 
starvation, or their metastatic abilities are boosted. The intra- and extra-cellular mechanisms 
associated with these cellular enhancements have been demonstrated. Some negative interactions 
of starvation with chemotherapy have also been included. The understanding of these mechanisms 
can help avoid them for better future experimental and clinical results and may, at the same time, 
open new avenues for research workers to find ways of dismantling them. 
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1. INTRODUCTION 
 
Cancer therapy by cell starvation has been the 
focus of many researchers and oncologists with 
promising knowledge accumulating over the past 
few decades. Workers have anticipated this to 
become a successful therapeutic intervention for 
cancer. In the course of research, a vast number 
of experimental starvation procedures tested 
have appeared in the literature [1,2]. However, 
the response to starvation was found to vary 
among various cancer cells whereby poorly 
differentiated and highly aggressive cells 
appeared to be more tolerant [3]. Moreover, and 
in the midst of the optimism about the effects of 
starvation on cancer, a number of methods used 
in the experimental starvation of various types of 
cancer failed to meet with the desired therapeutic 
targets and may even have induced cancer cell 
tolerance instead [4]. Hence, this brief 
communication has been prepared to give a 
description of the reported experiments and 
research protocols with negative outcomes, in 
addition to an account of the molecular 
mechanisms adopted by cancer cells to become 
resistant and lead to non-anticipated results. 
Such information may stand as guidelines for 
starvation research into either avoiding such 
protocols or finding solutions for them. 
 

2. NEGATIVE POTENTIALS IN STARVA-
TION THERAPY 

 

Oncologists refrain from starving patients with 
malignancies, especially children, since nutrition 
is necessary to enhance their survival and 
alleviate the effects of cancer cachexia [5]. 
Experiments have shown that nutritional 
starvation may cause wasting of the body of rats 
with methylcholanthrene-induced sarcomas, 
allowing tumours to grow [6]. Other experimental 
examples of the adverse effects of starvation 
were demonstrated when KHT fibrosarcoma cells 
and lymphoma cells showed enhanced 
metastatic potentials upon induction of acidosis 
[7,8]. Clinically, even short-term starvation of 
severely debilitated patients was associated with 
unfavourable outcomes [9,10]. Furthermore, a 
reduction in the number of immunocompetent 
cells was described following a few days of 
starvation [11]. Moreover, and unlike positive 
anticipated effects, malignant transformation 
would, at times, take place following long-term 
starvation stress, possibly due to chromosomal 
instability that may yield cells with even more 
aggressive malignancy phenotypes [12,13]. 
Similarly, chemical initiation of hepatocellular 

carcinoma in rats was followed by an accelerated 
development of the tumour when put under the 
stress of fasting-feeding cycles [14]. From 
metabolism points of view, the uptake of glucose 
and the synthesis of macromolecules by glucose-
starved Wilms’ tumour cells was found to be 
augmented by insulin [15]. A practical example of 
this is the suppression of the growth of Ehrlich 
ascites cells in mice with induced diabetes and 
starved for glucose. The suppressed Ehrlich 
ascites cells resume growth upon insulin 
administration pointing out the role of insulin in 
sustaining the metabolism and survival of tumour 
cells [16]. Another well reported starvation 
potential that yielded unwanted results have 
been the adverse effects of glutamine deprivation 
on the growth of cancer cells [17], mainly due to 
compensatory utilization and synthesis of 
asparagine and other non-essential amino acids 
[18]. In some tumour types, and in the absence 
of extracellular glutamine, a compensatory 
cellular mechanism acts, whereby p53 promotes 
the expression of SLC1A3, promoting for a 
molecular pathway that enhances glutamate, 
glutamine, and nucleotide synthesis to rescue 
cell viability [19]. Similar controversies have been 
described, whereby the deficiency/ starvation for 
L-arginine may yield unexpected tumour growth, 
especially in patients with arginine non-
auxotrophic cancer types [20]. Another 
enhancement of glutamine depletion can be 
through the use glutaminase inhibitor or 
transporter inhibitor [21]. 
 

3. CELLULAR MECHANISMS OF CELL 
SURVIVAL UNDER THE STARVATION 
STRESS 

 

A number of mechanisms have been described 
through which some cancer cells achieve a state 
of resistance to starvation. Works that employed 
hormonal therapies were, initially, met with some 
failures. Androgens or cytokines starvation can 
enhance the proliferation of prostate cancer cells 
especially following their increased expression of 
p300 [22]. Toll-like receptor 4 (TLR-4) positive 
prostate cancer cells can also overcome the 
starvation inhibition upon lipopolysaccharide 
(LPS) stimulation of the TLR 4 [23]. Also, 
mediated by the p-53-activated p-21, serine 
stringency was found to enhance shifting some 
prostate cancer cells into glutathione production 
to combat reactive oxygen species [ROS] 
[24,25]. 
 

In a similar mode, the breast cancer cell line 
MCF-7/BUS can resist the apoptosis induced by 
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estrogen starvation through a mechanism that 
involves GPR-78, and the level of its expression 
may serve as a marker for the responsiveness of 
breast cancer cells to estrogen manipulation 
therapy [26]. Mammary epithelial tumour cells 
have also been reported to utilize the serum-and 
glucocorticoid-induced protein kinase (Sgk) to 
rescue their survival during episodes of serum 
starvation [27]. 
 
Colon cancer cells may develop resistance to 
glucose deprivation through a number of 
molecular mechanisms: The oncosuppressor 
protein, HIPK2 (the homeodomain-interacting 
protein kinase 2), the c-Jun NH2-terminal kinase 
activation, or through the ATM/Chk2/p53 
signalling pathway [28,29]. Colon carcinoma cells 
can also resist thymidine deprivation [30] 
possibly through a mechanism that resembles 
the persistence of a calcium-independent 
melanoma cell line in spite of thymidine 
deprivation [31]. 
 
Starved malignant glioma cells survive through 
glycolysis and accelerated respiration induced by 
Tp53 [32,33]. Also, the recovery of the pancreatic 
adenocarcinoma cell line MiaPaCa2 is mediated 
through the defensive mechanism of the Nupr1 
[34]. Similarly, the increased expression of Mcl-1, 
a member of the bcl-2 family, rescued 
immortalised mouse embryonic fibroblasts from 
the starvation stress [35]. 

 
Furthermore, hypoxia and glucose starvation 
may augment the invasiveness of the cancer cell 
line HepG2 cells, aided by the Akt/ARK5 system 
and the AMP-activated protein kinase-alpha 
which mediates the hypoxia-induced 
transforming growth factor-beta1 [36,37]. Clearly 
described has been the inhibition of proteasome 
formation in the tumourigenic breast cancer cell 
line, MCF-7, leading to enhanced survival as 
these cells appear to acquire resistance to 
protein breakdown [38]. Amino acid starvation of 
MCF-7 cells was also found to induce the 
expression of cd24 mRNA which may play a role 
in the progression of breast cancer [39]. Another 
intra-cellular mechanism described has been the 
CLIC4/mtCLIC, a chloride intracellular channel 
protein, which also inhibits autophagy and 
apoptosis upon starvation of glioma cells [40]. 
Under limited glucose levels, survival of cancer 
cells was improved by the increased expression 
of the purine synthesis intermediate, 
succinylaminoimidazolecarboxamide ribose-5' 
(SAICAR) and its interaction with phosphate 
pyruvate kinase isoform (M2PK M2) [41]. Thus, it 

was concluded that some cancer cells may 
benefit from autophagy induced by starvation 
since they can utilize the autophagy products as 
energy sources [42,43]. 
 

In addition to the intra-cellular mechanisms 
described above, a number of other mechanisms 
that maintain cancer cell survival in starvation 
have also been described. One mechanism that 
accompanied the glucose starvation stress has 
been the chaperone-epidermal growth complex 
formation that prevented the release of the 
epidermal growth factor receptor (EGFR) until 
the removal of the stress [44]. Another 
mechanism which enables malignant cells to 
survive glucose starvation and hypoxia has been 
the increase, persistence and selectivity of the 
expression of the vascular endothelial growth 
factor (VEGF) that maintains and induces 
angiogenesis [45-48]. Similarly, VEGF mRNA is 
up-regulated in colon carcinoma cells through 
various MAPK pathways which stimulate the 
extracellular signal-regulated kinases (Erk-1/2) 
[49]. 
 

Under-nutrition of HeLa cells increases glycolysis 
for ATP production through induction of reactive 
oxygen species (ROS) production and 
phosphorylation of AMP-activated protein kinase 
(AMPK) [50]. This mechanism appears to mimic 
the Warburg effect [51] and provides some 
protection to growing cancer cells. Similarly, 
cancer cells under starvation stress can even 
utilize the mucin-1 (MUC-1) oncoprotein to 
induce autophagy and reduce the effects of 
glucose deprivation-induced ROS [52]. Other 
tumour cells also appear to resist starvation by 
blocking translation elongation through a 
mechanism lead by the eucaryotic elongation 
factor 2 kinase (eEFK-2) [53,54]. Moreover, the 
expression of wild type p53 in some cancer cells 
may confer the ability to inhibit starvation-
induced autophagy [55]. It may well be 
mentioned that arachidonic acid or 
nordihydroguaiaretic acid [NDGA], a 
lipoxygenase inhibitor can rescue W256 
carcinosarcoma cells of the monocytoid origin 
from apoptosis due to serum starvation [56]. 
Also, the tumourigenic DA breast cells have been 
shown to over-express the marker of metastasis, 
Ly-6, when put under stress of serum starvation 
or heat shock [57]. 
 

Glucose-starved leukaemia cells can be rescued 
by the early addition of inhibitors of signalling or 
anti-oxidants [58], pointing out the effects of 
unnecessary use of anti-oxidants that may 
disrupt the oxidative-anti-oxidative homeostasis 
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[59]. Similarly, insulinoma cells grown under 
glucose and amino acid starvation conditions 
resisted apoptosis, probably due to increased 
ability to withstanding oxidative stress [60]. In 
addition, autophagy of hepatocellular carcinoma 
cells was induced by hepatitis B x antigen or by 
hypoxia and were relieved by nutrient starvation, 
an opposite beclin-1-mediated effect [61-63]. In 
addition, starvation of a number of human 
colorectal cancers and breast cancer cell lines 
appeared to induce the p21 inhibition, which was 

overcome by the anti-Bcl-2 agent, ABT-737 
[64,65]. 
 
Fasting-re-feeding may enhance tumour 
development of colon cancer in a mitogenic 
fashion [66]. Furthermore, starved rats showed a 
potential for initiation of hepatic carcinogenesis 
following nitrosamine treatment, when followed 
by re-feeding [67]. All the above mechanisms 
have been summarised and displayed in Tables 
1 and 2. 

 
Table 1. The intra-cellular mechanisms that extend the survival of cancer cell lines during 

starvation 
 

Cell type and effector 
manipulation 

Mechanisms of survival References 

Androgens or cytokines starvation 
of prostate cancer cells 

Increased expression of p300 [22] 

TLR-4-positive prostate cancer 
cells under general energy 
starvation 

LPS stimulation of the TLR 4 [23] 

Prostate cancer cells under serine 
stringency 

p-53-activated p21 [24,25] 

Estrogen starvation-induced 
apoptosis breast cancer cell line 
[MCF-7/BUS] 

GPR-78 [26] 

Serum starvation of mammary 
epithelial tumour cells 

Sgk [27] 

Amino acid starvation of MCF-7 
cells 

Induce the expression of cd24 mRNA 
which may play a role in the progression 
of breast cancer 

[39] 

Glucose deprivation of colon cancer 
cells 

HIPK2 or the ATM/Chk2/p53 signalling 
pathway 

[28,29] 

Thymidine deprivation of colon 
carcinoma cells  

Calcium-independent mechanism [30,31] 

Starved malignant glioma cells Glycolysis and accelerated respiration 
induced by Tp53 [ 

[32,33] 

The pancreatic adenocarcinoma 
cell line MiaPaCa2 

The defensive mechanism of the Nupr1  [34] 

Immortalised mouse embryonic 
fibroblasts 

Increased expression of Mcl-1 [35] 

Hypoxia and glucose starvation of 
HepG2cancer cell line  

The Akt/ARK5 system and the AMP-
activated protein kinase-alpha which 
mediates the hypoxia-induced 
transforming growth factor-beta1  

[36,37] 

The tumourigenic cell line, MCF-7 Inhibition of proteasome formation leading 
to enhanced survival as such cells appear 
to acquire resistance to protein 
breakdown 

[38] 

Starved glioma cells The CLIC4/mtCLIC, a chloride 
intracellular channel protein, which also 
inhibits autophagy and apoptosis upon 
starvation 

[40] 

Cancer cells under limited glucose 
levels 

Increased expression of SAICAR and its 
interaction with M2PK M2 

[41] 
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Table 2. The functional and extra-cellular mechanisms that enhance the survival of cancer 
cells in starvation 

 

Cell type and effector 
manipulation 

Mechanisms of survival References 

Malignant cells to survive glucose 
starvation and hypoxia 

VEGF that maintains and induces 
angiogenesis 

[45-48] 

Starved tumour cells Blocking translation elongation through a 
mechanism lead by the eEFK-2  

[53, 54] 

Cancer cell starvation Wild type p53 in may confer the ability to 
inhibit starvation-induced autophagy 

[55] 

Glucose starvation stress of human 
epidermoid carcinoma A431 cells 

Chaperone-epidermal growth complex 
formation that prevented the release of the 
epidermal growth factor receptor [EGFR] 
until the removal of the stress 

[44] 

Colon carcinoma cells MAPK pathways including stimulating 
extracellular signal-regulated kinases [Erk-
1/2] that up-regulate of the VEGF mRNA 

[49] 

Under-nutrition of HeLa cells Increases glycolysis for ATP production 
through induction of ROS production and 
phosphorylation of AMPK 

[50] 

Cancer cells under starvation 
stress 

Utilizing the MUC-1 oncoprotein to induce 
autophagy and reduce the effects of 
glucose deprivation-induced ROS 

[52] 

Serum starvation of W256 
carcinosarcoma cells of the 
monocytoid origin   

Rescued by arachidonic acid or 
nordihydroguaiaretic acid [NDGA], a 
lipoxygenase inhibitor 

[56] 

DA breast cells Over-express the marker of metastasis, Ly-
6 

[57] 

Glucose-starved leukaemia cells Early addition of inhibitors of signalling or 
anti-oxidants 

[58] 

Glucose and amino acid starvation 
of insulinoma cells 

Increased capability to stand oxidative 
stress 

[60] 

Induced autophagy of 
hepatocellular carcinoma cells 

Nutrient starvation, an opposite beclin-1-
mediated effect 

[61-63] 

Nutrient starvation of human 
colorectal cancers and breast 
cancer cell lines 

Induction of p21 inhibition [64, 65] 

Fasting-re-feeding of colon cancer 
in  

A mitogenic effect or mode [66] 

Initiation of hepatic carcinogenesis 
following nitrosamine treatment in 
starved rats 

A mitogenic effect or mode [67] 

 
4. CONVENTIONAL THERAPY AND 

STARVATION 
 

It has been reported that starvation may enhance 
the action of conventional cancer therapies, in 
what has been described as the differential 
stress syndrome (DSS) [68,69]. Nevertheless, 
the susceptibilities of various types of                   
cancer to chemotherapeutic agents under 

various starvation regimens were found to vary 
greatly [70], and resistance to chemotherapy 
may be mediated by the starvation-induced 
multiple drug resistance gene-1 ([MDR-1) [71]. 
Besides, some cell lines such as the KHT 35LI 
was found to generate variants resistant to 
methotraxate [72]. Moreover, glucose starvation 
has also been unfavourable for the cisplastin-
induced apoptosis of the human epidermoid 
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carcinoma cell line A431 [73]. The growth of liver 
carcinoma cells is not suppressed by 5-fluoro-
uracil during glucose starvation [74]. 

 
5. CONCLUSIONS AND RECOMMENDA-

TIONS 
 
Cancer therapy by starvation is certainly not a 
straight forward method that can make dramatic 
therapeutic responses since failures are 
expected in its’ fight against cancer and cancer 
cells. Many of the reported mechanisms that 
prevent starvation stress-induced apoptosis or 
from autophagy have been described. These 
mechanisms must be considered in designing 
experimental or even clinical approaches to 
tumour starvation, especially that no conclusive 
evidence has been presented suggesting that 
dietary manipulations would give absolute benefit 
to cancer patients’ general health, or cause 
regression of tumours [75]. Furthermore, and 
whenever feasible, cancer cells may be tested 
prior to the start of any management protocols, to 
unveil any existing adverse mechanisms with 
potential survival enhancement. The current work 
may provide preliminary guidelines for 
performing such para-clinical scientific activity, 
which may provide more solid bases for clinical 
decisions. An example of such a proposal has 
been the levels of GPR-78 which may serve as a 
marker for the responsiveness of breast cancer 
cells to estrogen manipulation therapy [26]. In 
addition, nano-clustered cascaded enzymes that 
release glucose oxidase can deplete the cells off 
glucose and oxygen [76]. Regarding the immune 
system, the adverse effects reported earlier have 
been debated recently in scientific works and 
even in newspaper declarations and articles 
emphasizing the positive effects of fasting cycles 
through inducing stem cells to boost the immune 
system [77]. For its significance, this issue has 
recently been taken up by the general media 
[78,79]. Furthermore, the cancer starvation 
therapy mode has been a major issue during the 
past years and has been extensively researched 
into. Yet, published information on organized 
clinical trials has not been made available. In the 
midst of the euphoria of some advances in the 
topic, some lines are required to be drawn to 
avoid unnecessary failures. Such procedures 
would consider early recognition of modes of 
cancer cell survival. Knowledge of those may 
allow either avoiding them, if possible, by altering 
the starvation procedures, or rather intervention 
by methods such as cellular or genetic 
manipulations. 
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