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Abstract

This paper is about studying a 3-component mixture of the Inverted Exponential distributions
under Bayesian view point. The type-I right censored sampling scheme is considered because of its
extensive use in reliability theory and survival analysis. The expressions for the Bayes estimators
and their posterior risks are derived under different loss scenarios. In case, no or little prior
information is available, elicitation of hyper parameters is given. In order to study numerically,
the execution of the Bayes estimators under different loss functions, their statistical properties
have been simulated for different sample sizes and test termination times. A real life data example
is given to illustrate the study. Graphical representation of the simulation analysis results is also
given to study the properties of the Bayes estimators.
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1 Introduction

The exponential distribution is most commonly used in reliability studies but its suitability is
restricted to its constant hazard rates. When the failure rate is monotonically increasing or
decreasing, the two parameter weibull and the Gamma distributions are appropriate for analyzing
the life time data.

Recently two new distributions have been introduced the Generalized exponential(two parameter)
and the Inverted exponential(one parameter) distributions. When skewed distributions is needed,
then the Generalized exponential distribution can be used more effectively. Gupta [1] described
several properties of the two parameter Generalized exponential distribution. Dey [2] investigated
the Inverted exponential as a lifetime model from a Bayesian viewpoint. Prakash [3] examined the
properties of Bayes estimators of the parameters, reliability function and hazard rate under the
symmetric and asymmetric loss functions for the Inverted exponential distribution.

Mixtures models play an important role in many applicable fields such as medicine, psychology,
cluster analysis, life testing and reliability analysis. A finite mixture of some suitable probability
distribution is recommended to study a population that is supposed to comprise a number of
subpopulations mixing in an unknown proportion. However, several researchers are interested with
different parameters of mixture distributions. The analysis of mixture models under Bayesian
framework has developed a significant interest among statisticians. Majeed [4] described the
Bayesian anlysis of 2-component mixture of Inverted exponential distribution under quadratic loss
function. Ali [5] described the 2-component mixture of the inverse Rayleigh distributions under
Bayesian framework. Sultana and Aslam [6] presented 3-component mixture of Inverse Rayleigh
distributions, properties and estimation under the Bayesian framework.

Several types of data are encountered in everyday life, regarding simple data, grouped data,
truncated data, censored data and progressively censored data. Censoring is an inevitable part of
the lifetime data. A valuable account of censoring is given in Gijbles and Kalbfleisch and Prentice
[7]. There are different sorts of censoring schemes, including right, left and interval censoring, single
or multiple censoring and type-1 and type-II censoring.

Inspired by above mentioned applications of mixture models, we intend to study Bayesian analysis of
a 3-component mixture of the Inverted Exponential distributions with unknown mixing proportions.
The parameters of component distributions are assumed to be unknown. Three different priors and
three different loss functions are used for the Bayesian analysis. Moreover, an ordinary type-I right
censored sampling scheme is used.

The rest of the paper is organized as follows. In section 2, 3-Component mixture of Inverted
Exponential(IE) distribution is presented. The likelihood function of the mixture model is also
defined in section 3. Posterior distributions using the uniform prior (UP), the Jeffreys’ prior (JP)
and the inverse Gamma prior (IGP) are derived in section 4. The BEs and PRs are derived using
the UP, the JP and the IGP under squared error loss function (SELF), precautionary loss function
(PLF) and DeGroot loss function (DLF) are presented in section 5, 6 and 7, respectively. The
limiting expressions are discussed in section 8. The simulation study for the mixture model is given
in section 9. A real life data application is given in section 10. This article concludes with a brief
discussion in section 11.
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2 3-Component Mixture of the Inverted Exponential
(IE) Distri-butions

The probability density function (p.d.f) and the cumulative distribution function (c.d.f) of the IE
distribution for a random variable X are given by:

fm (x; θm) =
1

x2θm
exp

[
−
(

1

xθm

)]
, x > 0, θm > 0,m = 1, 2, 3. (2.1)

Fm (x) = exp

[
−
(

1

xθm

)]
, m = 1, 2, 3. (2.2)

A finite 3-component mixture model with the unknown mixing proportions p1and p2 is :

f(x) = p1f1(x) + p2f2(x) + (1− p1 − p2)f3(x), p1, p2 ≥ 0, p1 + p2 ≤ 1 (2.3)

f (x, θ1, θ2, θ3, p1, p2) = p1

(
1

x2θ1

)
exp

[
−
(

1

xθ1

)]
+ p2

(
1

x2θ2

)
exp

[
−
(

1

xθ2

)]
+(1− p1 − p2)

(
1

x2θ3

)
exp

[
−
(

1

xθ3

)]
; p1,p2 ≥ 0, p1 + p2 ≤ 1

(2.4)

While the c.d.f of 3-component mixture model is:

F (x) = p1F1 (x) + p2F2 (x) + (1− p1 − p2)F3 (x) (2.5)

F (x) = p1 exp

[
−
(

1

xθ1

)]
+ p2 exp

[
−
(

1

xθ2

)]
+ (1− p1 − p2) exp

[
−
(

1

xθ3

)]
(2.6)

3 The Likelihood Function

Suppose ‘n’ units from the 3-component mixture of Inverted Exponential distributions are used in
a life testing experiment with fixed test termination time t. Let ‘r’ units out of ‘n’ units failed
until fixed test termination time‘t’ and the remaining (n-r) units are still working. According to
Mendenhall and Hader [8], there are many practical situations in which the failed objects can be
pointed out easily as subset of subpopulation-I, subpopulation-II or subpopulation-III. Out of ‘r’
units, supposer1, r2 and r3units belong to subpopulation-I, subpopulation-II or subpopulation-III
respectively and such thatr = r1 + r2 + r3. Now we definexlk,0 < xlk < t be the failure time of
kthunit belonging to the lth subpopulation, where l = 1, 2, 3 and k = 1, 2, ..., rl. For a 3-component
mixture model, the likelihood function can be written as

L (ϕ | x) ∝

{
r1∏
k=1

p1f1 (x1k)

}{
r2∏
k=1

p2f2 (x2k)

}{
r3∏
k=1

(1− p1 − p2) f3 (x3k)

}
× [1− F (t)]n−r

(3.1)

After simplification, the likelihood function of 3-component mixture of IE distributions is given:

L (ϕ|x) ∝
n−r∑
i=0

i∑
j=0

j∑
l=0

(−1)i
(
n− r

i

)(
i
j

)(
j
l

)
(
1

θ1
)r1(

1

θ2
)r2(

1

θ3
)r3

× exp

{
− 1

θ1

(
r1∑
k=1

x−1
1k +

i− j

t

)}
exp

{
− 1

θ2

(
r2∑
k=1

x−1
2k +

j − l

t

)}

× exp

{
− 1

θ3

(
r3∑
k=1

x−1
3k +

l

t

)}
pi−j+r1
1 pj−l+r2

2 (1− p1 − p2)
l+r3

(3.2)
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4 The Posterior Distribution using the Non-informative
and the Informative Priors

In this section, posterior distributions of parameters given data, say x, are derived using the non-
informative (Uniform and Jeffreys’) and the informative (Inverse Gamma) priors.

4.1 The Posterior Distribution using the Uniform Prior (UP)

When elicitation of hyper parameters is difficult or little prior information is given, then usually the
non-informative prior is assumed to be the UP. Ups over the intervals (0,∞) and (0, 1) are taken for
the parameters (θ1, θ2&θ3) of IE distribution and for the mixing proportions (p1, p2), respectively.
With these settings, joint prior distribution of parameters(θ1, θ2, θ3, p1, p2), as defined by Saleem
(2010), is given by:

π1 (ϕ) ∝ 1; θ1, θ2, θ3 > 0, p1, p2 ≥ 0, p1 + p2 ≤ 1 (4.1)

The joint posterior distribution of parameters θ1, θ2, θ3, p1 and p2 given data x assuming the UP is:

g1 (ϕ|x) =Λ−1
1

n−r∑
i=0

i∑
j=0

j∑
l=0

(−1)i
(
n− r

i

)(
i
j

)(
j
l

)

× θ
−(A11+1)
1 θ

−(A21+1)
2 θ

−(A31+1)
3 exp

(
−B11

θ1

)
exp

(
−B21

θ2

)
× exp

(
−B31

θ3

)
pA01−1
1 pB01−1

2 (1− p1 − p2)
C01−1

(4.2)

where A11 = r1 − 1, A21 = r2 − 1, A31 = r3 − 1, B11 =
∑r1

k=1 x
−1
1k + i−j

t
,

B21 =
∑r2

k=1 x
−1
2k + j−l

t
, B31 =

∑r3
k=1 x

−1
3k + l

t
, A01 = i− j + r1 + 1,

B01 = j − l + r2 + 1, C01 = l + r3 + 1

Λ1 =

n−r∑
i=0

i∑
j=0

j∑
l=0

(−1)i
(
n− r

i

)(
i
j

)(
j
l

)
B (A01, C01)

×B (B01, A01 + C01)
Γ (A11)

BA11
11

Γ (A21)

BA21
21

Γ (A31)

BA31
31

(4.3)

4.2 The Posterior Distribution using the Jeffreys’ Prior (JP)

According to Jeffreys’ [9][10], the JP is defined as p (θm) ∝
√

|I (θm)|,m = 1, 2, 3, where I (θm) =

−E
[
∂2f⟨x|θm⟩

∂θ2m

]
is the Fisher’s information matrix. The prior distributions of the mixing proportions

p1 and p2 are again taken to be the uniform over the interval(0, 1). Under the assumption of
independence of all parameters, the joint prior distribution of (θ1, θ2, θ3, p1, p2) is:

π2 (ϕ) ∝
1

θ1θ2θ3
, θ1, θ2, θ3 ≥ 0, p1, p2 ≥ 0, p1 + p2 ≤ 1 (4.4)
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The Joint Posterior distribution of Parameters θ1, θ2, θ3, p1 and p2 given data x Assuming the JP
is:

g2 (ϕ|x) =Λ−1
2

n−r∑
i=0

i∑
j=0

j∑
l=0

(−1)i
(
n− r

i

)(
i
j

)(
j
l

)

× θ
−(A12+1)
1 θ

−(A22+1)
2 θ

−(A32+1)
3 exp

(
−B12

θ1

)
exp

(
−B22

θ2

)
× exp

(
−B32

θ3

)
pA02−1
1 pB02−1

2 (1− p1 − p2)
C02−1

(4.5)

where A12 = r1, A22 = r2, A32 = r3, B12 =
∑r1

k=1 x
−1
1k + i−j

t
, B22 =

∑r2
k=1 x

−1
2k + j−l

t
,

B32 =
∑r3

k=1 x
−1
3k + l

t
, A02 = i− j + r1 + 1, B02 = j − l + r2 + 1, C02 = l + r3 + 1, and

Λ2 =

n−r∑
i=0

i∑
j=0

j∑
l=0

(−1)i
(
n− r

i

)(
i
j

)(
j
l

)
B (A02, C02)

×B (B02, A02 + C02)
Γ (A12)

BA12
12

Γ (A22)

BA22
22

Γ (A32)

BA32
32

(4.6)

4.3 The Posterior Distribution using Inverse Gamma Prior (IGP)

Let us assume that the prior distributions of θ1, θ2 and θ3 are IGP with hyperparameters (a1, b1),
(a2, b2) and (a3, b3), respectively and Bivariate Beta prior for proportion parameters p1, p2 with
hyperparameters (a, b, c). Again assuming independence of all parameters, the joint prior distribution
of (θ1, θ2, θ3, p1, p2) is given by:

π3 (ϕ) ∝ θ
−(a1+1)
1 exp

(
− b1
θ1

)
θ
−(a2+1)
2 exp

(
− b2
θ2

)
θ
−(a3+1)
3 exp

(
− b3
θ3

)
× pa−1

1 pb−1
2 (1− p1 − p2)

c−1

(4.7)

The joint posterior distribution of parameters θ1, θ2, θ3, p1 and p2 given data x is:

g3 (ϕ|x) =Λ−1
3

n−r∑
i=0

i∑
j=0

j∑
l=0

(−1)i
(
n− r

i

)(
i
j

)(
j
l

)

× θ
−(A13+1)
1 θ

−(A23+1)
2 θ

−(A33+1)
3 exp

(
−B13

θ1

)
exp

(
−B23

θ2

)
× exp

(
−B33

θ3

)
pA03−1
1 pB03−1

2 (1− p1 − p2)
C03−1

(4.8)

where A13 = r1 + a1, A23 = r2 + a2, A33 = r3 + a3,M13 =
∑r1

k=1 x
−
1k1 +

i−j
t

+ b1,

B23 =
∑r2

k=1 x
−
2k1 +

j−l
t

+ b2, B33 =
∑r3

k=1 x
−
3k1 +

l
t
+ b3, A03 = i− j + r1 + a,

B03 = j − l + r2 + b, C03 = l + r3 + c,and

Λ3 =

n−r∑
i=0

i∑
j=0

j∑
l=0

(−1)i
(
n− r

i

)(
i
j

)(
j
l

)
B (A03, C03)

×B (B03, A03 + C03)
Γ (A13)

BA13
13

Γ (A23)

BA23
23

Γ (A33)

BA33
33

(4.9)

5



Sultana et al.; JAMCS, 31(6): 1-16, 2019; Article no.JAMCS.47255

5 The Bayes Estimators and Posterior Risks using the
UP, the JP and IGP under SELF

If d̂ is a Bayes estimator then ρ
(
d̂
)
is called posterior risk. Our purpose, in this study, is to look for

efficient Bayes estimators of the different parameters. The SELF, defined as L (θ, d) = (θ − d)2,was
introduced by Legendre [10] to develop the least squares theory. For a given prior, the Bayes

estimator and posterior risk under SELF are calculated as: d̂ = Eθ|x (θ) and ρ
(
d̂
)
= Eθ|x

(
θ2
)
−{

Eθ|x (θ)
}2

, respectively. The Bayes estimators and posterior risks using the UP, the JP and IGP
for parameters θ1, θ2, θ3, p1 and p2under SELF are obtained with their respective marginal posterior
distributions are given below:

θ̂1v =Λ−1
v

n−r∑
i=0

i∑
j=0

j∑
l=0

(−1)i
(
n− r

i

)(
i
j

)(
j
l

)
Γ (A1v − 1)

BA1v−1
1v

Γ (A2v)

BA2v
2v

× Γ (A3v)

BA3v
3v

B (A0v, C0v)B (B0v, A0v + C0v)

(5.1)

θ̂2v =Λ−1
v

n−r∑
i=0

i∑
j=0

j∑
l=0

(−1)i
(
n− r

i

)(
i
j

)(
j
l

)
Γ (A1v)

BA1v
1v

Γ (A2v − 1)

BA2v−1
2v

× Γ (A3v)

BA3v
3v

B (A0v, C0v)B (B0v, A0v + C0v)

(5.2)

θ̂3v =Λ−1
v

n−r∑
i=0

i∑
j=0

j∑
l=0

(−1)i
(
n− r

i

)(
i
j

)(
j
l

)
Γ (A1v)

BA1v
1v

Γ (A2v)

BA2v
2v

× Γ (A3v − 1)

BA3v−1
3v

B (A0v, C0v)B (B0v, A0v + C0v)

(5.3)

p̂1v =Λ−1
v

n−r∑
i=0

i∑
j=0

j∑
l=0

(−1)i
(
n− r

i

)(
i
j

)(
j
l

)
Γ (A1v)

BA1v
1v

Γ (A2v)

BA2v
2v

Γ (A3v)

BA3v
3v

×B (B0v, C0v)B (A0v + 1, B0v + C0v)

(5.4)

p̂2v =Λ−1
v

n−r∑
i=0

i∑
j=0

j∑
l=0

(−1)i
(
n− r

i

)(
i
j

)(
j
l

)
Γ (A1v)

BA1v
1v

Γ (A2v)

BA2v
2v

Γ (A3v)

BA3v
3v

×B (A0v, C0v)B (B0v + 1, A0v + C0v)

(5.5)

ρ
(
θ̂1v
)
=Λ−1

v

n−r∑
i=0

i∑
j=0

j∑
l=0

(−1)i
(
n− r

i

)(
i
j

)(
j
l

)
Γ (A1v − 2)

BA1v−2
1v

Γ (A2v)

BA2v
2v

× Γ (A3v)

BA3v
3v

B (A0v, C0v)B (B0v, A0v + C0v)−
(
θ̂1v
)2 (5.6)

ρ
(
θ̂2v
)
=Λ−1

v

n−r∑
i=0

i∑
j=0

j∑
l=0

(−1)i
(
n− r

i

)(
i
j

)(
j
l

)
Γ (A1v)

BA1v
1v

Γ (A2v − 2)

BA2v−2
2v

× Γ (A3v)

BA3v
3v

B (A0v, C0v)B (B0v, A0v + C0v)−
(
θ̂2v
)2 (5.7)
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ρ
(
θ̂3v
)
=Λ−1

v

n−r∑
i=0

i∑
j=0

j∑
l=0

(−1)i
(
n− r

i

)(
i
j

)(
j
l

)
Γ (A1v)

BA1v
1v

Γ (A2v)

BA2v
2v

× Γ (A3v − 2)

BA3v−2
3v

B (A0v, C0v)B (B0v, A0v + C0v)−
(
θ̂3v
)2 (5.8)

ρ (p̂1v) =Λ−1
v

n−r∑
i=0

i∑
j=0

j∑
l=0

(−1)i
(
n− r

i

)(
i
j

)(
j
l

)
Γ (A1v)

BA1v
1v

Γ (A2v)

BA2v
2v

× Γ (A3v)

BA3v
3v

B (B0v, C0v)B (A0v + 2, B0v + C0v)− (p̂1v)
2

(5.9)

ρ (p̂2v) =Λ−1
v

n−r∑
i=0

i∑
j=0

j∑
l=0

(−1)i
(
n− r

i

)(
i
j

)(
j
l

)
Γ (A1v)

BA1v
1v

Γ (A2v)

BA2v
2v

× Γ (A3v)

BA3v
3v

B (A0v, C0v)B (B0v + 2, A0v + C0v)− (p̂2v)
2

(5.10)

where v = 1 for the UP, v = 2 for the JP and v = 3 for the IGP.

6 The Bayes Estimators and Posterior Risks using the
UP, the JP and IGP under PLF

Norstrom [12] discussed an asymmetric PLF and also introduced a special case of general class of

PLFs, which is defined asL (θ, d) = (θ−d)2

d
. The Bayes estimator and posterior risk are:

d̂ =
{
Eθ|x

(
θ2
)} 1

2 , ρ
(
d̂
)

= 2
{
Eθ|x

(
θ2
)} 1

2 − 2Eθ|x (θ), respectively. The respective marginal

posterior distribution yields the Bayes estimators and posterior risk using the UP, the JP and
the IGP for parameters θ1, θ2, θ3, p1 and p2under PLF as:

θ̂1v =

{
Λ−1

v

n−r∑
i=0

i∑
j=0

j∑
l=0

(−1)i
(
n− r

i

)(
i
j

)(
j
l

)
Γ (A1v − 2)

BA1v−2
1v

Γ (A2v)

BA2v
2v

Γ (A3v)

BA3v
3v

B (A0v, C0v)B (B0v, A0v + C0v)

} 1
2

(6.1)

θ̂2v =

{
Λ−1

v

n−r∑
i=0

i∑
j=0

j∑
l=0

(−1)i
(
n− r

i

)(
i
j

)(
j
l

)
Γ (A1v)

BA1v
1v

Γ (A2v − 2)

BA2v−2
2v

Γ (A3v)

BA3v
3v

B (A0v, C0v)B (B0v, A0v + C0v)

} 1
2

(6.2)

θ̂3v =

{
Λ−1

v

n−r∑
i=0

i∑
j=0

j∑
l=0

(−1)i
(
n− r

i

)(
i
j

)(
j
l

)
Γ (A1v)

BA1v
1v

Γ (A2v)

BA2v
2v

Γ (A3v − 2)

BA3v−2
3v

B (A0v, C0v)B (B0v, A0v + C0v)

} 1
2

(6.3)

p̂1v =

{
Λ−1

v

n−r∑
i=0

i∑
j=0

j∑
l=0

(−1)i
(
n− r

i

)(
i
j

)(
j
l

)
Γ (A1v)

BA1v
1v

Γ (A2v)

BA2v
2v

Γ (A3v)

BA3v
3v

B (B0v, C0v)B (A0v + 2, B0v + C0v)

} 1
2

(6.4)
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p̂2v =

{
Λ−1

v

n−r∑
i=0

i∑
j=0

j∑
l=0

(−1)i
(
n− r

i

)(
i
j

)(
j
l

)
Γ (A1v)

BA1v
1v

Γ (A2v)
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7 The Bayes Estimators and posterior Risks using the
UP, the JP and IGP under DLF
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8 Limiting Expressions

Letting t → ∞, all the observations that are incorporated in our analysis are uncensored and
therefore r tends n, r1tends to the unknown n1, r2 tends to the unknown n2 and r3 tends to the
unknown n3. As a result, the amount of information contained in the sample expands, which results
in the depletion of the variance of the estimates.

9 Simulation Study

Simulation study is conducted in order to investigate the role of our derived Bayes estimators in
terms of three different loss functions. Different set of the parametric values (θ1, θ2, θ3, p1, p2) =
(2, 3, 4, 0.30, 0.50), (4, 3, 2, 0.50, 0.30), (3, 3, 3, 0.40, 0.40). For fixed sample size, test
termination time and set of parameters, the simulation is repeated 1000 times and the results
are then averaged. Sample of sizes p1n, p2n and (1− p1 − p2)n are chosen randomly from first
component densityf1 (x; θ1), second component density f2 (x; θ2) and third component densityf3
(x; θ3), respectively. The observations which are greater than a fixed t are declared as censored
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observations. For each t only failures have been examined either as a member of subpopulation-
I or subpopulation-II or subpopulation-III. On the basis of each sample size, the BEs and PRs
are computed using the informative and non-informative priors under SELF, PLF and DLF.To
obtain BEs under informative priors, hypeparameters are chosen in such a way that prior mean
become the expected value of the corresponding parameter. In order to evaluate the impact of

Figure 1: Graphs of BEs and BPRs θ1 under SELF

Figure 2: Graphs of BEs and BPRs of θ2 under PLF

Figure 3: Graphs of BEs and BPRs of θ3 under DLF

test termination time on Bayes estimators, the Type-I right censoring scheme is used for fixed test
termination time t=15 and 20. For each of the 1000 samples, the Bayes estimators and Posterior
risks were calculated using a routine in Mathematica 10.0. The simulation study gives us some
interesting characteristics of the BEs. The properties have been foregrounded in terms of sample
sizes, size of mixing proportion parameters, different loss functions and censoring rates. It is noticed
that because of censoring, the posterior risks of all the parameters are reduced with an increase in
sample size. The graphs are based on simulation analysis results corresponding to the different prior
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Figure 4: Graphs of BEs and BPRs of p1 under SELF

Figure 5: Graphs of BEs and BPRs of p2 under DLF

Figure 6: Graphs of BEs and BPRs of θ1 using UP

distributions and various loss functions. In Fig.1-5, the UP, the JP and the IGP are represented
by (red, yellow and blue) colors while in Fig.6-10, SELF, PLF and DLF are represented by (red,
yellow and blue) colors respectively. It is noticed from these results that Bayes estimates perform
well under all priors with slight variation. When using IGP, underestimation is observed in BEs
for all parametric values considered. Under-estimation increases for SELF, but underestimation for
the gained BEs improves with increasing the sample size.
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Figure 7: Graphs of BEs and BPRs of θ2 using JP

Figure 8: Graphs of BEs and BPRs of θ3 using IGP

Figure 9: Graphs of BEs and BPRs of p1 using UP

10 A Real Life Data Application

Davis [14] reported the real mixture data on lifetimes of many components used in aircraft sets.To
illustrate the proposed methodology, we take the data on three components namely, transmitter
tube, combination of transformers and combination of relays. Tahir [15] used this data for 3-
Component mixture of the exponential distributions. We used this data for 3-Component mixture
of the inverted exponential distributions by using the inverse transformation. To have a type-I right
censored data, we fix t=0.029. The sample statistics required to evaluate the proposed estimates
are as follows:

n = 702, r1 = 310, r2 = 148, r3 = 181, r = 639, n− r = 63,∑r1
k=1 x

−1
1k = 5.6958,

∑r2
k=1 x

−1
2k = 2.1722,

∑r3
k=1 x

−1
3k = 3.5284

The BEs and PRs using the UP, the JP and the IGP under SELF, PLF and DLF are presented in
the table 1 .
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Figure 10: Graphs of BEs and BPRs of p2 using IGP

Table 1: Bayes estimates (BEs) and posterior risks (PRs) of 3-component mixture of
inverted exponential distributions using the UP, the JP, and the IGP under SELF,
PLF and DLF with Davis(1952) mixture data

Prior Loss Functions θ̂1 θ̂2 θ̂3 p̂1 p̂2
UP SELF BE 0.01849 0.01488 0.01971 0.48442 0.23209

PR 0.000001 0.000002 0.000002 0.000388 0.000277
PLF BE 0.01852 0.01493 0.01977 0.48482 0.23268

PR 0.000060 0.000102 0.000111 0.000801 0.001193
DLF BE 0.01855 0.01498 0.01982 0.48523 0.23328

PR 0.003247 0.006849 0.005587 0.001652 0.005119
JP SELF BE 0.01843 0.01478 0.01960 0.48442 0.23209

PR 0.000001 0.000001 0.000002 0.000388 0.000277
PLF BE 0.01846 0.01483 0.01966 0.48482 0.23268

PR 0.000060 0.000101 0.000109 0.000801 0.001193
DLF BE 0.01849 0.01488 0.01971 0.48522 0.23328

PR 0.003236 0.006803 0.005556 0.001652 0.005119
IGP SELF BE 0.000005 0.000009 0.000007 0.00011 0.00005

PR 0.000001 0.0000004 0.000002 0.000052 0.000012
PLF BE 0.02487 0.04156 0.03063 0.48468 0.23303

PR 0.000080 0.000279 0.000169 0.000799 0.001188
DLF BE 0.02490 0.04170 0.03071 0.48508 0.23363

PR 0.003226 0.006711 0.005525 0.001648 0.005092

From the above table, it is noticed that results obtained through real data are compatible with
simulation results.

11 Conclusions

In this paper, we have considered the Bayesian estimation of 3-component mixture of Inverted
Exponential distributions using the non-informative (Uniform and Jeffreys’) and the informative
(Inverse Gamma) priors under SELF, PLF and DLF. The purpose of this paper is to disclose the
appropriate combinations of prior distributions and loss functions to estimate the parameters of
the 3-component mixture of the Inverted Exponential distributions. We conducted a extensive
simulation study to regulate the relative performance of the Bayes estimators. From simulated
results, we observed that an increase in the sample size and test termination time provides better
Bayes estimators. Furthermore, as sample size increases (decreases) the posterior risks of Bayes
estimators decreases (increases) for a fixed test termination time. Also, the DLF is observed as
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a suitable choice for estimating component parameters and SELF is preferable for estimating the
proportion parameters. Finally, we conclude that the IGP is suitable prior in order to estimate
the component parameters. When SELF is used, the IGP is an appropriate prior for proportion
parameters. The same pattern is observed for the JP when non-informative priors are considered.

In case of non-informative priors,overestimation is found when uniform prior is used. But the
problem of overestimation exists only for small samples. PRs using Jeffreys prior are smaller
than PRs obtained under uniform prior. So, the performance of Jeffreys prior can be concluded
to be better as it produces elegant BEs and the differences among PRs is negligible. It is also
examined that PRs is higher for higher parametric values and smaller for smaller values of paramet-
ers. In general,Posterior risk(DLF)<Posterior risk(PLF)<Posterior risk(SELF) for the component
parameters.For the proportional weights,Posterior risk(SELF)<Posterior risk(PLF)<Posterior risk
(DLF). The same interpretation is obtained in the graphs (Fig.1-10) of the simulation results.
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