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ABSTRACT 
 

Aims: This study evaluated the physical, chemical and rheological properties of exopolysaccharides 
(EPSs) produced by Lactic Acid Bacteria (LAB) isolated from palm wine.  
Materials and Methods: EPSs from palm wine LAB strains were produced on 6% sucrose broth, 
purified and freeze-dried prior to analyses.  Molecular weights (MW), rheological and structural 
composition (functional groups) of the EPSs were determined using standard methods and Fourier 
transform infrared spectroscopy (FTIR).  
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Results: The average MW of the EPSs ranged from 2.02×10
6
 to 6.53×10

6 
Da while the flow index 

(n) values ranged from 0.03-3.13 at 0.2%, 0.06-1.51 at 0.4%, 0.38 - 1.85 at 0.6%, 0.14 - 2.26 at 
0.8% and 0.55 - 6.42 at 1% concentrations at elevated temperatures for EPS solutions from the ten 
LAB species. The FTIR spectrum revealed prominent peaks of various groups of OH (3420 cm

-1
) 

and CH3 bending (2090 cm
-1

) in all the EPSs corresponding to both hydroxyl and amine groups, 
and aliphatic C-H bonds, respectively. EPS synthesized by Leuconostoc lactis, Lactococcus lactis 
subsp lactis and Lactiplantibacillus plantarum showed weak absorption peaks (1148 – 1145 cm

-1
) 

indicating the C-O-C and C-O bonds, while absorption peaks of Lactobacillus lactis, Lactobacillus 
acidophilus and Lactiplantibacillus plantarum (1267 – 1253 cm

-1
) indicated O- acetyl ester and other 

non-sugar components. 
Conclusions: The FTIR spectra, rheological properties and molecular weight of EPSs synthesized 
by the ten LAB strains indicated potentials that could be exploited in different industrial applications, 
and as stabilizers in food industries  

 

 
Keywords: Exopolysaccharides; molecular weight; lactic acid bacteria; fourier transform infrared 

spectroscopy; palm-wine; viscosity. 
 

1. INTRODUCTION 
 
“Microorganisms, including lactic acid bacteria 
(LAB), have been reported to produce 
polysaccharides that are potentially useful as 
thickeners, stabilizers, emulsifiers, bodying 
agents, gelling agents, or fat replacers in several 
food products” [1-4]. Some LAB species are well 
known as polysaccharide/gums producers, and 
gum (dextran) from Leuconostoc mesenteroides 
has been exploited commercially [5,6]. The 
biodegradable and high molecular weight 
features of these polymers biosynthesized by a 
wide range of bacteria, yeasts and moulds have 
been documented [6-8]. The rheological 
properties of gums produced by LAB which are 
influenced by the structure, molecular mass and 
amount of gum produced, have been shown to 
markedly improve the texture and consistency of 
fermented products [3,9,10].  
 
“LAB are food grade organisms, generally 
recognized as safe (GRAS). During the 
fermentation of palm sap, certain strains of LAB 
produce exopolysaccharides (largely dextrans 
and levans), which are responsible for the 
consistency and soluble white colouration of the 
palm wine” [6,11,12]. “The exopolysaccharide 
(EPS) from LAB has potential applications in 
improvement of rheology, texture and mouth-feel 
of fermented products” [3,13]. The utility of such 
LAB-derived EPS is demonstrated by its 
biopolymer nature and physico-chemical 
properties suitable for wide range of 
technological applications. Generally, industrial 
applications of EPS and other polymers are 
determined by their molecular weight and/or the 
functional groups content of the molecular chains 
[2,14,15] 

Molecular mass of EPS has been shown to 
influence their functionality as food additive. To 
this end, the required molecular mass of EPS for 
meaningful result particularly dextran on 
sourdough bread should range from 2 × 10

6
 to 4 

× 10
6
 Da (U.S. Patent 6, 399, 119) [16].  Studies 

have shown that ability of EPS to confer viscosity 
in aqueous solutions or food products is largely 
determined by the molecular parameters [17,18]. 
The molar masses of EPS produced by lactic 
acid bacteria varied according to strains and 
depend on the polymer [18]. Ruas-Madiedo et al. 
[19] reported the molar mass of EPS produced 
by two strains of Streptococcus thermophilus 
(designated as Sts and Rs), and that Sts had 
higher molecular weight (3.7 x 10

6
 Da) and 

consequently more viscous than Rs with                
lower molecular weight (2.6 x 10

6
 Da). To obtain 

a high viscosity in a certain product, the 
application of EPS with higher molar mass with 
relative stiffness is desirable [14]. Earlier, the role 
of stiffness as one of the ingredients in 
viscosifying properties of EPS has been reported 
[20]. 
 
EPS has been shown to have desirable 
rheological properties such as high specific 
viscosity and tolerance to extremes in pH and 
temperature [15,21]. Generally, the rheological 
properties of hydrocolloids/EPSs are of special 
importance in process design, evaluation and 
modelling, and for texture attribute modification. 
However, viscosities of hydrocolloids are affected 
by concentrations, temperatures, pressure, shear 
rate and time of shearing. The effect of 
concentration on apparent viscosity of 
hydrocolloids is usually expressed by either a 
power relationship or an exponential, while the 
effect of temperature on the apparent viscosity at 
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a specified shear rate has been described by an 
Arrhenius-type model [22,23]. 
 

Flow behaviour of hydrocolloid solutions has 
been described using several models including 
power law (Ostwald-deWaele), Casson models, 
linear (Newtonian or Bingham) and power law 
with a yield stress (Herschel-Bulkley) [23,24]. 
“However, the power law model is perhaps the 
most widely employed model for non-Newtonian 
liquids and is used extensively to describe the 
flow properties of liquids in theoretical analysis 
as well as in practical engineering applications” 
[22,25].  
 

“Further, Fourier transform-infrared spectroscopy 
has been a useful tool in monitoring structural 
changes in biopolymers” [26]. “The use of Fourier 
transform-infrared spectroscopy (FTIR) in the 
field of microbiology has proved to be a 
promising technique. FTIR spectroscopy 
simultaneously measures the vibration of 
functional groups of different cell component in 
multi-component mixtures. Admittedly, 
polysaccharides contain a significant number of 
hydroxyl groups, which exhibit an intense broad 
stretching peak. To determine the molecular 
mass of an EPS, exist different methods; the 
chromatography using refractive index (RI) 
detection [18], gel permeation chromatography in 
an HPLC [10,27] or fast protein liquid 
chromatography (FPLC) system and formula 
derivation. The use of formula for determination 
of the molecular weight of EPS developed by 
Banks and Greenwood has been reported” 
[15,28]. 
  

In recent years, much attention has been given 
to a large variety of exopolysaccharide-producing 
LAB from different sources including grains, 
dairy, meat products, fermenting vegetables and 
fermented foods [6,14,29,30]. “Such LAB 
exopolysaccharides are considered to be safe 
and possess the possibility of replacing 
stabilizers and thickeners currently produced 
commercially by non-food grade bacteria” 
[3,4,10,31,32]. Low yields of polysaccharide 
production by the majority of LAB species 
remains the main reason for their non-
commercial exploitation. Though some LAB 
species have showed high yields EPSs 
production potential [16,33]. The functional 
properties of EPSs are influenced by their 
primary structure [34], and structural analysis 
combined with rheological studies revealed that 
there is considerable variation among the 
different EPSs [17,19]. In this study, the physical, 
chemical and rheological properties of EPSs 

produced by some LAB species isolated from 
palm sap were evaluated with a view to 
establishing potential applications for commercial 
exploitation. 
 

2. MATERIALS AND METHODS  
 

2.1 Source of Isolates 
 

Ten strains of exopolysaccharide-producing 
lactic acid bacteria (Leuconostoc lactis; 
AB023968, Lactobacillus fermentum; 
AF477498.1, Lactobacillus lactis; AY675257.1, 
Lactococcus lactis subsp lactis; AY920468, 
Lactobacillus delbrueckii; X52654.1, 
Lactobacillus acidophilus; FJ556999.1, 
Lactobacillus plantarum; EU121673, 
Lactobacillus crispatus; AB008206.1, 
Leuconostoc mesenteroides; AB023243, and 
Lactobacillus plantarum; EU148598) were used 
in this study. The LAB species were obtained 
from fresh palm wine as previously described by 
Adamu-Governor et al. [35] and identified based 
on 16S rRNA gene analysis. The identified LAB 
strains were stored in 6% sucrose agar slants at 
4 °C.  
 

2.2 Microbial Gum Production 
 

Cultivation was performed in basal medium (v\v, 
6% sucrose, 0.5% peptone, 0.05% K2HPO4, 
0.025% MgSO4) in 1.5 L flasks with 1 L working 
volume according to the method described by 
Adamu-Governor et al. [6]. Growth was 
monitored by absorbance measurement at a 
wavelength of 650 nm using a 
spectrophotometer (Spectrum lab S23A, Globe 
Medical, City, England). 
 

2.2.1 Isolation and quantification of EPS 
 

Isolation and quantification of EPS were carried 
out according to the method described by 
Adamu-Governor et al. [6]. The cells suspension 
was stirred with glass rod, heated at 80 °C 
(Heating block) to extract EPS associated with 
bacteria cells and cells were harvested from the 
fermented culture broth by centrifugation at 
11,000 x g for 30 min in a pre-weighed tube.  
EPS were precipitated with 3 volumes of chilled 
ethanol (95%, v/v) and kept overnight at 4 

o
C for 

complete precipitation. The precipitated crude 
EPS was collected by centrifugation at 10,000 x 
g, 4 °C (J2-HS, Beckman, USA) for 30 min, and 
EPS pellets were dried in an oven at 105 °C to a 
constant weight. The EPS pellets were dissolved 
in 50 ml distilled water, precipitated twice with 
isopropanol and then freeze-dried (Telster, 
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Cryodos-8mode, Spain).  Quantification of EPS 
was done using dry weight method [6]. 
 

2.2.2 Physical analysis of exopolysaccharides 
 

The functional groups of the freeze-dried EPS 
were determined by Fourier transformed-infrared 
(FT-IR) spectroscopy [36]. The EPS pellets for 
FT-IR analysis was obtained by grinding a 
mixture of 1.2 mg EPS and 150 mg of dry 
potassium bromide powder in a mortar, followed 
by pressing the mixture into a mould. The Fourier 
transformed-infrared spectra were recorded on a 
FT-IR (Bruker IFS 66v/s, Germany) equipped 
with OPUS version 3.1 software for windows in 
the region of 4000-40 cm

-1
, and at a resolution of 

4 cm
-1

. 
 

2.3 Specific Viscosity 
 

The apparent viscosity (Pa.s) of the EPS solution 
(0.2 - 1.0% in distilled water, pH 7.0, 32 ± 2 °C, 
45, 60 and 90 °C) was measured using 
Brookfield viscometer, (DV-E viscometer, spindle 
number 2; Brookfield engineering Laboratory, Inc 
II commerce, Middleboro) according to Kaur et 
al. [37] with modifications. EPS solutions of 0.2, 
0.4, 0.6, 0.8 and 1% w/v were prepared by 
dissolving 0.4, 0.8, 1.2, 1.6 and 2.0 g of freeze-
dried EPS powder in 200 ml water, respectively. 
The solution was stirred with a sterile glass rod 
until a particle suspension-free solution was 
obtained and the pH adjusted to 7 with the 
addition of either 0.1 M sodium hydroxide or 0.1 
M hydrochloric acid as required. The viscosities 
at different concentrations of the EPS solutions 
were measured at various shear rates (10.6, 
12.72 and 21.2 per second). All viscosity (cP) 
measurements were repeated thrice using 
solutions freshly prepared. The specific viscosity 
of the EPS solutions was calculated by 
employing the formula: 
 

       
 

  
                                                      (1) 

 

Where ηsp, specific viscosity; η, viscosity of EPS 
solution; η0, viscosity of solvent. 
 

2.3.1 Molecular weight of exopolysaccharides 
 

The molecular weight of EPS was calculated 
following the formula developed by Banks W and 
Greenwood CT [28] as follows: 
 

                                                         (2) 
 

Where, Mw, the molecular weight of EPS; ηsp, the 
specific viscosity of EPS solution at 0% 
concentration. 

2.3.2 Rheological analysis 
 

Power law modelling analysis was used to find a 
rheological model that can be employed to fit the 
experimental measurements. 
  

                                                                   (3) 
 

Where  , shear stress; Ƙ, consistency index; γ, 
shear rate; n, flow index. 
 

2.4 Statistical Analysis 
 

Molecular weight data were generated in 
triplicates, subjected to statistical analyses using 
a one-way Analysis of Variance test (ANOVA) 
and data were reported as mean value ± 
standard deviation with the aid of SPSS (IBM 
SPSS Inc 26 Chicago, IL, USA) 
 

3. RESULTS  
 

3.1 Fourier Transform Infrared Analysis 
 

The Fourier transform infrared (FT-IR) spectrum 
of the crude EPSs synthesized by lactic acid 
bacteria isolated from palm wine is presented in 
Figs. 1a–, 2a–d) and 3a – b). Generally, the IR 
spectra of the partially purified selected LAB 
species/strain EPSs showed more complex 
pattern of peaks from 3500 to 1200 cm

-l
. The 

results showed that spectrum of the EPS 
displayed a broad stretching intense peak at 
around 3420 cm

-1
 characteristics for hydroxyl 

and amine groups, and a peak around 2090 cm
-1

 
indicating aliphatic C-H bonds (Figs. 1-3). 
Polysaccharides contain a significant number of 
hydroxyl groups which exhibit an intense broad 
stretching peak around 3450 cm

-l
. The 

absorption in that region showed a typical trait of 
hydroxyl groups which strongly suggested that 
the substance was a polysaccharide.  
 

In addition, a peak was also observed around 
2090 cm

-1
 corresponding to methyl groups as 

well as methylene groups (Figs. 1-3). Further, a 
strong absorption was observed at around 1643 
cm

-1
 which corresponds to primary amide (1

o
 

amide) > C = O stretch and C-N bending of 
protein and peptide amines. Similarly, a weak 
symmetrical peak was noticed near 1416 – 1404 
cm

-1 
(Figs. 1-3), suggesting the presence of 

carboxyl groups. The peak within range 1416 – 
1404 cm

-1
could be assigned to   C = O stretch 

of the COO
-
 groups and C – O bond from COO

-
 

groups has been established.  In addition, the 
spectra also showed bands around 1000, 1200, 
1400, 1500 and 1600 cm indicating conclusively 
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that it was (1, 3) - glucan linkages. Further, a 
weak absorption near 1148 – 1145 cm

-1 

particularly in EPS synthesized by Leuconostoc 
lactis, Lactococcus lactis subsp lactis and 
Lactiplantibacillus plantarum showed C-O-C and 
C-O bonds (Figs. 1a, 1d and 2c). This weak 
absorption indicated C-O-C and C-O bonds 
corresponding to the presence of carbohydrates. 
 
 Furthermore, EPS synthesized by Lactobacillus 
lactis, Lactobacillus acidophilus and 
Lactiplantibacillus plantarum (Figs. 1c, 2b and 
3b) showed spectra with a peak near 1267 – 
1253 cm

-1
. Noticeably, these EPSs differed from 

EPS synthesized by other LAB species selected 
in this study due to the presence of peak around 
1267 – 1253 cm

-1
 in the spectra suggesting the 

presence of O-acetyl ester and other non-sugar 
components (Figs. 1c, 2b and 3b). In general, a 
strong absorption was observed near 1025 – 
1020 cm

-1 
in the spectra of all EPS produced by 

the ten LAB species in this study and this 
suggest that all EPS synthesized were 
undoubtedly polysaccharides. In the same vein, 
the absorption bands in the region 983-1200 cm

-1
 

in this study suggested the presence of sugar 
monomers such as glucose, galactose and 
mannose in the EPS of LAB species. 
   
The FTIR spectra EPSs in this study revealed 
characteristic functional groups, such as a broad 
stretching -OH at 3420 cm

-1
, a peak C-H at 

around 2090 cm
-1

, strong absorption 1 > C = O 
stretch and C-N bending of protein and peptide 
amines at around 1643 cm

-1
 and a weak COOH 

peak at around 1416 – 1404 cm
-1

 (Figs. 1-3). 
Further, strong absorption near 1025-1020 cm

-1
 

corresponding to the presence of carbohydrate 

was also revealed in the spectra. These 
functional groups were common to all the ten 
LAB species EPS. 
 

3.2 Viscosity Measurement of EPSs 
Solution 

 

The mean values of apparent viscosities (η) of 
EPSs solution synthesized by LAB isolated from 
oil and raphia palm sap differed between species 
and varied within species (data not shown). As 
expected, the mean values of apparent 
viscosities showed an increase at lower shear 
rate ( ) and a decrease at higher shear rate. The 
decrease in apparent viscosities of EPSs solution 
with increasing shear stress in this study 
revealed a non-Newtonian shear thinning 
behaviour. The apparent viscosities mean values 
also showed high viscosities at all shear rates by 
the LAB EPSs compared with xanthan gum.  
 

3.3 Power Law Model of EPS Solution 
 

The power law mathematical model values of 
EPSs synthesized by LAB species in this study 
showed consistency index (k) values ranging 
from 0.02 – 320.67 for 0.2% (w/v) concentration; 
42.98 – 40000.26, 0.35 – 402823.27, 0.06 – 
6059.23 and 0.00 – 14953.67 for 0.4, 0.6 0.8 and 
1%, respectively (Table 1). Similarly, the flow 
index (n) obtained ranged from 0.03 – 3.13 for 
2%; 0.06 – 0.82 for 0.4%; 0.38 – 1.85 for 0.6%; 
0.14 – 2.26 for 0.8%; 0.12 – 6.42 for 1%. The 
flow index value ‘n’ of EPSs solution for all LAB 
species in this study exhibited either shear-
thinning or shear-thickening properties at 
elevated constant temperature and at different 
concentrations. 

  

 
 

Fig. 1. FT-IR spectrum of the exopolysaccharide produced by (a) Leuconostoc lactis (b) 
Lactobacillus fermentum (c ) Lactobacillus lactis (d) Lactococcus lactis subspecies lactis 
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Fig. 2. FT-IR spectrum of the exopolysaccharide produced by (a) Lactobacillus delbrueckii (b) 
Lactobacillus acidophilus (c) Lactiplantibacillus plantarum (d) Lactobacillus crispatus 

 

 
 

Fig. 3. FT-IR spectrum of the exopolysaccharide produced by (a) Leuconostoc mesenteroides 
(b) Lactiplantibacillus plantarum 

 

The flow index values (n) showed that as the 
concentrations of EPS increased in the solution, 
the EPS tends to exhibit more of shear-
thickening properties as shown in EPSs 
synthesized by Leuconostoc lactis, L. delbrueckii, 
L. crispatus, and Leuconostoc mesenteroides 
given that their index values were greater than 
one (Table 1). Contrarily, the flow index values 
‘n’ of EPS synthesized by Lactiplantibacillus 
plantarum was less than one showing shear-
thinning properties as the concentration of EPS 
increased in the solution. In addition, at 0.2% 
concentration, EPS synthesized by Lactobacillus 
lactis, Lactococcus lactis subsp lactis, 
Lactobacillus acidophilus and Lactiplantibacillus 
plantarum strains (1.27 – 1.92) had flow index 
values greater than one (1), while Leuconostoc 
lactis, Lactobacillus fermentum, Lactobacillus 
delbrueckii, Lactobacillus crispatus and 
Leuconostoc mesenteroides had flow index less 
than 1. Generally, the flow index of EPSs of all 

the LAB species at 0.4% concentration was less 
than 1 (0.06 – 0.96) and thus, exhibiting shear-
thinning properties. Furthermore, only 
Lactobacillus fermentum, Lactobacillus lactis, 
Lactobacillus crispatus and Leuconostoc 
mesenteroides had flow index greater than 1 
(1.15 – 1.85) at 0.6% concentrations. Similarly at 
0.8% concentration, all the LAB species/strains 
EPS showed flow index values greater than 1 
(1.03 – 2.26) except Lactobacillus crispatus, 
Leuconostoc mesenteroides and 
Lactiplantibacillus plantarum. Finally, at 1% 
concentration, six of the LAB species; 
Leuconostoc lactis, Lactococcus lactis 
subspecies lactis, Lactobacillus delbrueckii, 
Lactobacillus acidophilus, Lactobacillus crispatus 
and Leuconostoc mesenteroides EPSs had flow 
index values greater than 1 (1.50 – 6.42).  
Generally, Leuconostoc lactis and Lactobacillus 
delbrueckii EPS showed increase in flow index 
values (0.11 – 6.24; 0.25 – 1.87) as percentage 
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concentration of EPS in a solvent (w/v) 
increased. Similar trend was observed with 
Lactobacillus crispatus EPS (0.10 – 3.02). 
Lactiplantibacillus plantarum EPS had a steady 
flow index value of less than 1 across all 
concentrations accept at 0.2% concentration. 
 

3.4 Molecular Weight Determination of 
EPS 

 
The molecular weights of crude EPSs 
synthesized by EPS-producing lactic acid 
bacteria isolated from palm wine are presented in 
Table 2. The apparent molecular weight of the 
EPS from the ten LAB species ranged from 2.02 
× 10

6
 Da synthesized by Lactobacillus 

fermentum to 6.53 × 10
6
 Da synthesized by 

Lactobacillus crispatus. As expected, the 
molecular weight of EPSs synthesized by lactic 
acid bacteria isolated from palm wine differed 
between species and varied within strains. The 
molecular weight of EPSs synthesized by two 
strains of Lactiplantibacillus plantarum ranged 
from 2.13 × 10

6
 to 3.21 × 10

6
 Da. The molecular 

weights of the EPSs obtained in this study were 
derived by viscosity measurements at various 
concentrations of each EPS. 
 

4. DISCUSSION 
 
Functional groups of the partially purified EPS 
synthesized by the ten LAB species were 
detected using FTIR spectrum. Studies have 
shown that FTIR spectra offer estimate of 
components/functional groups in the 
exopolysaccharide (EPS) [15,38,39]. This result 
is in consonance with previous reports that the 
presence of –OH groups at (2800 cm

-1
to 3600 

cm
-1

) position of IR spectra of EPS of bacteria 
indicated polysaccharide [38,40,41]. The range 
of values for the region where the intense broad 
stretching peak occurred in this study was within 
the range reported by Wang et al. [36] that the IR 
spectra of Lactobacillus plantarum KF5 EPS 
showed the presence of –OH group at around 
3307 cm

-1
. [42] revealed that the IR spectrum of 

biofilm forming marine bacterium EPS showed 
the presence of –OH group with a broad 
stretching peak at 3415.31 cm

-1 
position. 

“Further, the presence of intense broad 
stretching peak occurring at 2800 cm

-1
to 3600 

cm
-1

is the characteristics absorption band of 
carbohydrate ring and is responsible for the 
water solubility of EPS” [36,38,43].  
 

In addition, the spectra also revealed the 
presence of carboxyl groups. This observation is 

in agreement with the earlier findings of Helm D 
and Naumann D [44] and Haxaire et al. [45] who 
observed a peak at 1404 cm

-1 
in IR spectra of 

some bacteria cell components and hydration of 
polysaccharide hyaluronan. Similarly, Wang et al. 
[36] and Kumar et al. [38] reported a peak near 
1447 – 1380 cm

-1
 IR spectra suggesting the 

presence of carboxyl groups in EPS of 
Haloalkalophilic bacillus species I-450 isolated 
from heavily polluted soil samples of the Korean 
Yellow sea and Lactobacillus plantarum KF5 
isolated from Tiber kefir. [8] also reported that the 
IR spectrum of crude Bacillus subtilis (MTCC 
121) polysaccharide sample showed bands at 
1000-1500 cm

-I
 which the authors inferred as 

characteristic to glucan. According to Černá et al. 
[46] and Čopíková et al. [47], the wave number 
region from 1200 to 800 wave cm

-1
 is finger print 

region and can be used to characterize different 
polysaccharides. Earlier, Mishra A and Jha B [48] 
reported a broad stretch of C-O-C, C-O at 1000 – 
1200 cm

-1
 indicating the presence of 

carbohydrate in biofilm. Similarly, Pawar et al. 
[49] also observed a peak at 11000 cm

-1 
for EPS 

obtained from saline soil bacterium.  
 
 “The presence of O-acetyl ester and other non-
sugar components at spectra peak around 1267-
1253 cm

-1
 has been established” [36,50].  Kazy 

et al. [50] reported that “the spectra of EPS 
produced by Leuconostoc species CFR 2181 
and algal polysaccharide showed an additional 
peak at around 1240 cm

-1
 region due to the 

presence of O-acetyl ester”. “These reports were 
comparable with the FT IR spectra obtained in 
this study. Many researchers have reported that 
the adherence of non-sugar components such as 
uronic acid, pyruvate and hexosamine to EPS 
greatly influences physical properties such as 
filterability, thermally induced conformational 
transition [51,52] and viscosity” [52,53]. “Previous 
reports showed that the strongest absorption 
band at 1075 cm

-1 
was attributed to 

polysaccharide” [54]. Similarly, Wang et al. [36] 
reported that EPS of Lactobacillus plantarum 
isolated from Tibet kefir showed absorption band 
at the region of  1075 cm

-1 
which the authors 

reported as polysaccharide. [55] reported that the 
monosaccharide constituents of pectic and 
hemicellulosic polysaccharides such as 
galactose, mannose and glucose showed the 
strongest FT IR bands at 1078 cm

-1
, 1070 cm

-

1
and 1035 cm

-1 
respectively. On the contrary, 

Pawar et al. [49] reported a peak at 1038.92 cm
-1 

of EPS obtained from saline soil bacterium which 
corresponds to stretching of C-O, alcohol, ether 
and phenol groups. 
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Table 1. Power law parameters of microbial gum from LAB isolated from palm wine at 60 °C 
 

 0.2 g/l  0.4 g/l  0.6 g/l  0.8 g/l  1.0 g/l 

k N R
2
 K n R

2
 k n R

2
 k N R

2
 k n R

2
 

Control 113.88 0.03 0.97  7743.37 0.39 1.00  1.70 1.53 1.00  0.29 1.85 0.77  0.00 3.19 0.74 
1 320.67 0.11 1.00  3405.51 0.24 1.00  46.50 0.70 1.00  0.58 1.80 0.94  1.57 6.42 0.93 
2 26.60 0.96 0.81  912.58 0.06 0.99  1.87 1.58 0.95  0.06 2.26 0.97  315.76 0.12 0.80 
3 1.74 1.70 1.00  40000.26 1.51 1.00  8.76 1.17 0.75  2.44 1.44 1.00  61.46 0.59 1.00 
4 0.02 3.13 1.00  7412.17 0.46 1.00  4141.71 0.38 1.00  14.95 1.03 0.58  2.37 1.50 1.00 
5 106.98 0.26 1.00  372.86 0.25 1.00  21.16 0.96 0.71  12.22 1.07 0.72  0.44 1.87 1.00 
6 2.78 1.61 0.91  42.98 0.82 0.92  104.72 0.62 0.74  1.21 1.59 0.99  0.16 2.03 1.00 
7 1.01 1.92 1.00  49.73 0.79 0.64  40282.27 0.65 1.00  116.00 0.53 1.00  48.06 0.73 0.81 
8 33.32 0.63 0.48  2075.08 0.10 0.95  0.35 1.85 0.73  2.51 1.47 0.78  0.00 3.02 0.96 
9 103.57 0.28 0.93  98.68 0.61 0.75  9.57 1.15 1.00  673.52 0.14 1.00  9.99 3.64 0.97 
10 8.74 1.27 0.87  37734.44 0.96 1.00  203.20 0.39 1.00  6059.23 0.44 1.00  14953.67 0.55 0.94 

Values of apparent viscosity are recorded in triplicate. k, consistency index; n, flow index; n =1, the fluid behaviour shows Newtonian profile; n ≤ 1, the fluid exhibits 

non-Newtonian of shear‐ thinning properties; n ≥ .1, the fluid shows non‐Newtonian of shear‐thickening properties. Control; xanthan gum, 1; Leuconostoc lactis, 2; 
Lactobacillus fermentum, 3;  Lactobacillus lactis, 4; Lactococcus lactis subsp lactis, 5; Lactobacillus delbrueckii, 6; Lactobacillus acidophilus, 7;   Lactiplantibacillus plantarum, 

8; Lactobacillus crispatus, 9; Leuconostoc mesenteroides, 10; Lactiplantibacillus plantarum 
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Table 2. Molecular weight of microbial gums from bacteria isolated from palm wine 
 

S/n  Gum producing lactic acid bacterial gums Molecular weight (Da) 

1 Leuconostoc lactis 5.00 ± 0.00 × 10
6
 

2 Lactobacillus fermentum 2.02 ± 0.12 × 10
6
 

3 Lactobacillus lactis 2.23 ± 0.10 × 10
6
 

4 Lactococcus lactis subsp lactis 3.78 ± 0.08 × 10
6
 

5 Lactobacillus delbrueckii 4.67 ± 0.02 × 10
6
 

6 Lactobacillus acidophilus 3.57 ± 0.05 × 10
6
 

7 Lactiplantibacillus plantarum 3.21 ± 0.00 × 10
6
 

8 Lactobacillus crispatus 6.53 ± 0.21 × 10
6
 

9 Leuconostoc mesenteroides  4.67 ± 0.10 × 10
6
 

10 Lactiplantibacillus plantarum 2.13 ± 0.02 × 10
6
 

Values are recorded in triplicate. Values are recorded as mean value ± standard deviation 

 
“In addition, the presence of carboxyl group in 
EPS may serve as binding sites for divalent 
cations” [56]. “The carboxyl group may also work 
as functional moieties to generate new and/or 
modified polymer variants using different 
approaches like synthetic polymers or novel 
formulation designing by linking this 
polysaccharide with starch” [40]. “Also, the 
carboxyl and hydroxyl groups in spectra are 
preferred groups for flocculation processes 
similar to polyelectrolyte characteristics [36,57].  
Besides, presence of several hydroxyl (-OH) 
groups markedly increases their affinity for 
binding water molecules thereby rendering EPS 
hydrophilic” [24]. 
 
Exopolysaccharides from the ten LAB species in 
this study showed high viscosities at all shear 
rates. LAB EPS showing shear thinning 
properties with higher viscosities at all shear 
rates compared with xanthan gum has been 
established [20,39,58,59]. These authors 
reported the pseudoplastic nature of LAB EPSs 
and attributed this property to the breakdown of 
structural units in EPS generated during shear by 
hydrodynamic forces. Similarly, other studies 
have also reported pseudoplastic properties of 
EPSs from non-lactic bacteria [15,38,60,61]. 
These authors observed that the viscosity of the 
EPSs solution decreased with increase in the 
shear rate. Ismail B and Nampoothiri KM [62] 
reported that EPS from Lactobacillus plantarum 
MTCC 9510 incorporated into wheat            
starch had higher viscosity than starch-
carboxymethylcellulose as the control at the 
same concentration. The author also observed 
that the dispersions of EPS and wheat starch 
exhibited a non-Newtonian and pseudoplastic 
behaviour. Structural composition of EPS and 
molecular weight are responsible for high 
viscosity and pseudoplastic behaviour of EPS 
[63]. Shear thinning properties and higher 

viscosity are desirable qualities for viscosifying 
agent used in food products [64]. “Pseudoplastic 
characteristics of biogums enhances sensory 
qualities such as flavour release and mouthfeel 
in food products, and guarantees a high degree 
of mixability and pourability. Industrially, 
important EPSs such as xanthan gum exhibit 
high viscosity with pseudoplastic behaviour 
which makes it an effective thickener and 
stabilizer in the food industry” [61,65].  
 
“The effect of concentration on apparent viscosity 
of hydrocolloids is generally described by either 
an exponential or a power relationship” [23]. This 
observation is in agreement with the studies of 
Van den Berg DJC et al. [20] and Ricciardi et al. 
[59] who reported that results of good shear-
thinning property in aqueous solutions of EPS 
produced by Lactobacillus sake 0-1 and 
Streptococcus thermophilus with high viscosities 
at all shear rates compared with xanthan gum. 
For most non-Newtonian fluids, at constant 
temperature and pressure, the viscosity 
decreases with an increase in shear rate, giving 
rise to what is known as pseudoplasticity or 
shear-thinning behaviour [20,38,62]. 
 
The flow index (n) of EPSs solution in this study 
exhibited both shear-thinning and shear-
thickening properties at constant concentration 
and varying temperature. These changes in ‘n’ 
values of EPSs synthesized by LAB exhibited at 
different concentrations and at constant 
temperature observed in this study may be 
attributed to structural composition and molecular 
weight of the EPSs [62,63]. “Temperature has an 
important influence on the flow behaviour of 
hydrocolloid solutions” [66]. “Since different 
temperatures are usually encountered during 
processing of hydrocolloids, their rheological 
properties are studied as a function of 
temperature” [63]. Concentration of EPS in a 
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solution is known to influence the flow behaviour 
of the solution. Vicente-García et al. [67] reported 
that “EPS solution of Phormidium 94a isolated 
from an arid zone of Mexico showed shear 
thinning property with increasing shear rate and 
this effect became more pronounced as polymer 
concentration increased”. Marcotte et al. [22] 
earlier reported that “co-solutes like sucrose, 
concentration of hydrocolloid, shear rate and 
temperature are also important variables that 
influence the rheological status of hydrocolloid 
gels”. “The author also observed a consistent 
change in apparent viscosity with increasing 
temperature at 1% concentration xanthan gum. 
The properties exhibited by the EPS could be 
attributed to the particular structure composition 
of the EPS comprising glucose and mannose 
linked by α and β (1, 3) linkages and its 
molecular weight” [62]. In addition, Marcotte et al. 
[22] showed that “gum solutions with a high value 
of ‘n’ tend to feel slimy in the mouth”. “When high 
viscosity and good mouthfeel characteristics are 
desired, the choice should be a gum system 
having a low ‘n’ value. Earlier studies have 
reported that for a given gum type, the value of 
flow behaviour index (n or ‘n’) and its change 
with concentration are highly dependent on the 
molecular size” [22,68]. 
 
The apparent molecular weight of EPSs 
synthesized by LAB species in this study exceed 
10

5
 Da.  This result agreed with the findings of 

Minervini et al. [16] who reported that the 
apparent molecular weight of EPS from 
Lactobacillus curvature DPPMA10 exceeded 10

5
 

Da. [20] earlier reported that EPS produced by 
Lactobacillus sake 0-1 was 6.0 × 10

6
 Da. 

Similarly, Muralidharan J and Jayachandran S 
[15] reported that the molecular weight of EPS 
from Vibrio alginolyticus was 6.39 × 10

6
 Da. The 

occurrence of two polymers with different 
molecular weights which occurs in some 
Lactococcus lactis subspecies cremoris [69] and 
Lactobacillus delbrueckii subspecies bulgaricus 
[70] strains, have been reported. Also, the 
occurrence of high (1-6 × 10

6
 Da) and low (0.1-1 

× 10
5
 Da) molecular weight fractions in EPS 

produced by LAB is well documented [64,71]. 
However, [14] observed that some of the values 
of molecular weight reported in literatures were 
over-estimated due to the presence of 
aggregates in aqueous solutions. The reason for 
using viscosity measurements method for 
obtaining the molecular weight of the EPSs was 
to eliminate the presence of aggregates in 
aqueous solution [15]. The average molecular 
weight of non-aggregated molecules of the 

dextran produced by Leuconostoc 
mesenteroides NRRL B-512F varied between 6.2 
and 7.1 × 10

6
 Da [14,72]. In addition, the 

molecular mass distribution of all polymers is 
highly dependent on the viscosity of the polymer 
[20]. 
 
In general, it is also known that the molecular 
weight and the functional groups in the molecular 
chains of the polymer are important determinants 
for the flocculating activity [36,38]. In case of 
protein bio-flocculants, the amino and carboxyl 
groups are responsible and effective flocculation 
groups [38,73]. The average molecular weight of 
EPS produced by Lactobacillus sake 0-1 (6 × 10

6
 

Da) was in the same order of magnitude as that 
of xanthan gum (4 × 10

6
 Da to 9 × 10

6
 Da) 

[14,20].  
 

5. CONCLUSION 
 
The physical, chemical and rheological 
properties of EPSs synthesized by ten LAB 
strains from palm wine in this study 
demonstrated potential industrial applications. 
The EPSs revealed high molecular weight as 
revealed by Lactobacillus crispatus, Leuconostoc 
lactis, Leuconostoc mesenteroides and 
Lactobacillus delbrueckii that could be exploited 
in different industrial applications, while the 
excellent rheological property of EPS 
synthesized by Lactococcus lactis subsp lactis, 
Lactobacillus acidophilus and Lactiplantibacillus 
plantarum as revealed by power law modelling 
analysis can be exploited as thickening agent in 
food industry. Also, the FTIR spectra of the EPSs 
revealed the presence of hydroxyl groups, 
amines groups, methyl and methylene               
groups, carboxyl groups, glucan linkages, 
carbohydrates, O-acetyl ester and non-sugar 
components which are desirable groups for 
increasing affinity for binding water molecules, 
binding sites for divalent cations and flocculation 
processes. 
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