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Abstract

In this Letter, we study the evolution of the autocovariance function of density-field fluctuations in star-forming
clouds and thus of the correlation length lc(ρ) of these fluctuations, which can be identified as the average size of the
most correlated structures within the cloud. Generalizing the transport equation derived by Chandrasekhar for static,
homogeneous turbulence, we show that the mass contained within these structures is an invariant, i.e., that the
average mass contained in the most correlated structures remains constant during the evolution of the cloud, whatever
dominates the global dynamics (gravity or turbulence). We show that the growing impact of gravity on the turbulent
flow yields an increase of the variance of the density fluctuations and thus a drastic decrease of the correlation length.
Theoretical relations are successfully compared to numerical simulations. This picture brings a robust support to star
formation paradigms where the mass concentration in turbulent star-forming clouds evolves from initially large,
weakly correlated filamentary structures to smaller, denser, more correlated ones, and eventually to small, tightly
correlated, prestellar cores. We stress that the present results rely on a pure statistical approach of density fluctuations
and do not involve any specific condition for the formation of prestellar cores. Interestingly enough, we show that,
under average conditions typical of Milky-Way molecular clouds, this invariant average mass is about a solar mass,
providing an appealing explanation for the apparent universality of the IMF in such environments.

Unified Astronomy Thesaurus concepts: Molecular clouds (1072); Hydrodynamics (1963); Star formation (1569)

1. Introduction

The dynamics of star-forming molecular clouds (MCs) are
determined by the statistical properties of their density
fluctuations under turbulence and gravity. A fundamental
quantity in such a study is the autocovariance function (ACF)
of density-field fluctuations, which allows the determination of
the characteristic correlation length lc(ρ) of density structures
within the cloud. In this Letter, we study the ACF and the
correlation length of density fluctuations in MCs and we show
that the latter can be identified as the average size of the most
correlated structures within the cloud. Generalizing the
transport equation derived by Chandrasekhar (1951a) for static,
homogeneous isotropic turbulence to a non-isotropic, time-
evolving turbulent flow, we show that, whereas the correlation
length decreases with time as gravity proceeds in the cloud, the
mass contained within these structures of size lc(ρ) is an
invariant, like invariants found, e.g., in incompressible
turbulence (Batchelor 1953). This striking result implies that
the average mass contained in the most correlated structures in
star-forming gravo-turbulent MCs, which will be ultimately
distributed within prestellar cores, is imprinted within the initial
conditions of the cloud and is constant during its evolution.

2. Mathematical Framework

2.1. Evolution of a Molecular Cloud

The dynamics of the cloud are described as in Jaupart &
Chabrier (2020; hereafter JC20). The only useful equation for

the present study is mass conservation:

r
r¶

¶
+ =v

t
0, 1· ( ) ( )

where ρ denotes the gas mass density and v the velocity field.
We are interested in clouds that will eventually condense

locally to form stars, hence we separate the evolution of the
background from that of local density deviations. The velocity
field v is thus split into a mean velocity V and a (turbulent)
velocity u (Ledoux & Walraven 1958). Introducing the
logarithmic excess of density, r r=s log( ), we get by
definition:

r
rºV v

1
, 2( )

º -u v V, 3( )

r rº x t e, , 4s( ) ( )

where F º Fx xt t, ,( ) ( )( ) is the mathematical expectation,
also called statistical average or mean, of random field Φ (Pope
1985; Frisch 1995). We note that ¹u 0 a priori but r =u 0.
This ensures that on average there is no transfer of mass due to
turbulence and the equation of continuity (1) remains valid for
the mean field,

r
r¶

¶
+ =V

t
0. 5· ( ) ( )

Subtracting the equations for the average variables from the
original equations, we obtain the evolution of the density
deviations.
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2.2. Model for the Statistics of a Turbulent Cloud

2.2.1. Statistically Homogeneous Clouds

In studies of star formation, be it observations of a cloud or
numerical simulations, one usually has access to only a small
number of samples (only one in most cases). Thus, one has to
make a basic assumption, sometimes called “fair-sample
hypothesis,” that the observed sample is large enough for
volumetric (or time) averages over this single sample to
provide accurate statistical estimates. For this procedure to be
valid, the random field must be ergodic and thus statistically
homogeneous (Papoulis & Pillai 1965). Note that statistical
homogeneity does not imply spatial homogeneity. Ergodicity,
one of the fundamental hypotheses of statistical physics,
insures that the average value of a statistical quantity (density
fluctuations in the present context) is equal to the mean of a
large number (in space or time) of measured quantities (e.g.,
Penrose 1979). It is commonly made, for instance, in studies of
turbulent flows, with or without self-gravity (Chandrasekhar
1951a, 1951b; Batchelor 1953; Pope 1985; Frisch 1995; Pan
et al. 2018, 2019a, 2019b; Jaupart & Chabrier 2020) or in
cosmology to study the dynamical evolution of structures in the
universe (Peebles 1973; Heinesen 2020). This assumption does
not constrain fluctuations around the average to be small.
Statistical homogeneity implies that, for any stochastic field Φ,
F = Fx t t,( ) ( ). In particular, r r=x t t,( ) ( ) in our context.

With these assumptions, the dynamics of the cloud density
and logarithm of density fluctuations are governed by the
following equations:

r
r

r - = - = V
d

dt

d

dt

ln 1
, 6

( ) · ( )

= - u
Ds

Dt
, 7· ( )

where d

dt
denotes the derivative of a variable that is only a

function of time t and = +¶
¶

vD

Dt t
( · ) is the Lagrangian

derivative. Equation (6) shows that the statistical homogeneity
hypothesis for ρ implies, to be consistent, that the rhs of
Equation (6) must be a function of time t only. It thus
constrains the flow to belong to a certain class of flows. In
order to fulfill this constraint, it suffices that:

= +V x x ct L t t, , 8V V( ) ( ) · ( ) ( )

where L tV ( ) is a 3× 3 matrix and cV(t) is a spatially constant
vector. Enforcing V= 0 yields exactly the equations usually
used to prescribe the evolution of a periodic simulation box in
an astrophysical context (Federrath & Klessen 2012; Pan et al.
2019b). However, this is not equivalent to applying periodic
boundary conditions (see, e.g., Robertson & Goldreich 2012
for an example of a periodic box and V≠ 0).

2.2.2. Accepted Class of Flows

In our homogeneous model, the bulk flow V is restricted to a
certain class of flows. This class, however, contains many kinds
of flows relevant to the present study, such as linearized shears,
notably galactic shears, homogeneous rotations, and in
particular solid rotations, and global homogeneous contractions
or expansions, which need not be isotropic. We note that this
construction is similar to that used in Newtonian cosmology,

where usually V=H(t)x is the Hubble flow and H(t) is
Hubble’s expansion rate (see also Buchert & Ehlers 1997;
Vigneron 2021 for the class of permitted flow in cosmology).
Therefore, these models can properly describe the evolution

of the density-field statistics in star-forming clouds.

2.3. Ergodicity and the ACF of the Homogeneous Density Field

In ergodic theory, which specifies under which conditions
the ergodic hypothesis is valid and provides an assessment of
errors in the estimation of averages, the ACF Cρ of the
statistically homogeneous density field is of prime importance
(see, e.g., E. Jaupart & G. Chabrier 2021, in preparation,
hereafter JC21). It is defined as

r r r- ¢ º ¢ -r x x x xC t , 92( ) ( ( ) ( )) ( ) ( )

and reaches a maximum at x = - ¢ =x x 0 : xr C ( )
r=rC 0 Var( ) ( ) (see, e.g., Papoulis & Pillai 1965 for a

demonstration), where rVar( ) is the variance of ρ. Length
scales for which correlations are statistically significant are
encoded in the ACF. This statistical object allows thus the
extraction of characteristic length scales of physical processes.

2.3.1. Slutsky’s Theorem and the Correlation Length

As mentioned above, one assumes statistical homogeneity
and builds the following ergodic estimator for the expectation
of ρ:

òr r=
W

x x
L

d
1

, 10L 3
ˆ ( ) ( )

where W = - ,L L

2 2

3
⎡⎣ ⎤⎦ is a control volume of linear size L and

volume L3, which is sought to be as large as possible. The
ergodic estimator rLˆ has variance:

ò x xr
x

= -r
W =L

C
L

dVar
1

1 , 11L
k

k
3 2 1

3
⎛
⎝

⎞
⎠

( ˆ ) ( )
∣ ∣

( )

where the integration volume 2Ω= [− L, + L]3 stems from the
change of variables x¢  = - ¢ = + ¢x x x x y x x, ,( ) ( ). This
leads to Slutsky’s theorem (Papoulis & Pillai 1965): the
stochastic field ρ is mean ergodic in the mean square (MS)
sense, if and only if

ò x x r
W ¥L

C d
1

0. 12
L3 2

( ) ( )

From this, one derives two sufficient (physical) conditions for ρ
to be mean ergodic. Either

ò x x < ¥r


C d , 13
3

( ) ( )

or

x
x

r
¥

C 0, 14( ) ⟶ ( )
∣ ∣

which means that values of the density field at two
points separated by a lag ξ are uncorrelated at infinitely large
distance. The first condition leads to the definition of
the correlation length lc(ρ) of the density field ρ (see, e.g.,
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Papoulis & Pillai 1965):

ò òx x x xr = =
r

r r
 

l
C

C d C d
0

1

2

1

2
, 15c

3
3 33 3

( ( ))
( )

( ) ˜ ( ) ( )

where

x
x
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r
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is the correlation coefficient at lag ξ that generates a measure of
how correlated two values of the density field are. Then, using
the two physical assumptions Equations (13) and (14), one
obtains for lc(ρ)≪ L, and from Equation (11):

r r
r
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l
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where R= L/2. Comparing Equation (17) with the variance
rVar x N,( ˆ ) of the estimator of the expectation r obtained from a

frequency interpretation where the experiment is repeated over
N independent trials ωi,

år r w=
=

x
N

1
, , 18x N

i

N

i,
1

ˆ ( ) ( )

r
r

=
N

Var
Var

, 19x N,( ˆ ) ( ) ( )

we see that one can interpret the ratio rR lc 3( ( )) as an effective
number of “independent” samples.

2.4. The Correlation Length as an Average Size of the Most
Correlated Structures

2.4.1. Integral Scale

In homogeneous and isotropic turbulence, one introduces a
quantity similar to the correlation length, called the integral
scale li (not to be confused with the injection scale), defined as
(Batchelor 1953)

ò òr x x x x= =
r

r r
¥ ¥

l
C

C d C d
1

0
. 20i

0 0
( )

( )
( ) ˜ ( ) ( )

In the usual phenomenology of turbulence, this integral scale is
used as a measure of the lags for which the velocities are
significantly correlated and thus gives a measure of the
accuracy of volumetric averages as estimates of actual
statistical averages (Frisch 1995). The correlation length, the
very quantity that enters Slutsky’s theorem (Equation (12)), is
given, in this isotropic context, by

òr
p

x x x= r
¥

l C d
2

. 21c
3

0

2( ) ˜ ( ) ( )

One finds that lc ; li in many cases. Indeed, for an exponential
ACF with x r= x

r
-C eVar li( ) ( ) ∣ ∣ , we have lc= π1/3 li, whereas

for a Gaussian ACF ( x r= x
r

l-C eVar
2( ) ( ) ∣ ∣ ), lc= li. More-

over, for an ACF of the form x r x= -rC lVar 1 p
0( ) ( )( ( ) ) for

r< l0 and decaying rapidly outward, one gets lc= (1.9− 0.8) li
for p ∈ [0.2, ∞ [ (the typical value in turbulence is p= 2/3 for
the velocity field).

The integral scale can thus serve as a proxy for the
correlation length, but this latter is the only quantity defined in

absence of isotropy, as well as the one entering Slutsky’s
theorem (Equation (12)).

2.4.2. Average Size of the Most Correlated Structures

If the ACF of the ergodic field ρ is isotropic, the above
equation for the integral scale li(ρ) can be used to define a
weight function Wl(ξ) that measures the correlation of
structures of size ξ= ∣ξ∣

r r r
= =r r

W r
l

C r C r

l

1

Var
. 22l

i i
( )

( )
( )
( )

˜ ( )
( )

( )

Note that this weight function does not need to be positive and,
in general, can have negative values, but its integral over all
possible sizes ξ is 1 by construction. If the ACF of ρ is positive,
however,Wl(r) can be further identified as the PDF of the size r
of correlated structures. We can then build the weighted
average of the size of correlated structures, á ñlw , as :

ò òx x x
r

x x xá ñ = = r
¥ ¥

l W d
l

C d
1

. 23w l
0 i 0

( )
( )

˜ ( ) ( )

Then, as was the case for the integral scale, li(ρ), in many
situations

ò x x x rr
¥

C d l , 24c
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which yields:

r
r
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l
l . 25w

c
c

2
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Thus, lc(ρ) measures the average size of correlated structures,
weighted by the correlation coefficients xrC̃ ( ). We then call this
average size the average size of the most correlated structures,
in order to indicate that it is a weighted average.
This construction, which relies on the assumption of

isotropy, serves to illustrate the physical meaning of lc(ρ). In
the absence of such an assumption, lc(ρ) is the only quantity
that can be defined, but can still be interpreted as a measure of
the average size of the most correlated structures. This is in
agreement with the picture obtained from Equations (17) and
(19), where the ratio R lc 3( ) is interpreted as an effective
number of “independent” samples in the volume V= (2R)3.

3. Generalized Transport Equations and Conserved
Quantity

Chandrasekhar (1951a) derived a transport equation for the
autocovariance function Cρ in a statistically homogeneous
isotropic and globally static medium with fixed background
density r r=t 0( ) . We generalize his result to our class of
statistically homogeneous flows that are not necessarily
isotropic and with non-trivial evolution, i.e., for which r t( ) is
a function of time and ¹v 0.

3.1. Transport Equation

The derivation of the transport equation follows the lines of
Chandrasekhar (1951a) but accounting now for the non-trivial
background flow; it is given in Appendix A. Expressing
everything in terms of the logarithmic density s (see
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Equation (4)), we find:

x x x
x

x x

=
¶
¶

+
¶
¶

+
¶
¶

+
¶
¶

x x-

t
C L t C

R R

0

,
26

u u

e V
i

i
e

i
e e
i

i
e e
i

, ,

s s
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where R ue e
i

,s s is the cross correlation function of the two fields
e s and e su i, which depends only on the lag ξ under the
assumption of statistical homogeneity. In fact, from the
definition of u, =e u 0s

i , so that R ue e
i

,s s is also the cross
covariance function of e s and e su i. If one assumes statistical
isotropy,

x x x=R L . 27ue e
i

e e u
i

, ,s s s s( ) (∣ ∣) ( )

Then, the last two terms on the right-hand side of Equation (26)
can be combined to give ¶ xx R2 ue e

i
,i

s s( ) and we recover the result
of Chandrasekhar (1951a) (his Equation (13)). Equation (26)
thus generalizes the transport equation for the ACF of ρ derived
by Chandrasekhar (1951a) for a non-isotropic, time-evolving
flow:

x x
¶
¶

= ¶r x r r
t

C L2 ,u
i

,i
( ( )) ( )

with the addition of the advection term for relative velocity
xD = - ¢ =x xv v t v t L t, ,i i i

V
i( ) ( ) ( ( ) · ) , because distortion

can only be generated by the relative motion (Kolmogorov
1941; Frisch 1995), and without assuming statistical isotropy at
all scales.

As before, we use in the following the two common physical
assumptions that enforce ergodicity. The covariance and cross
covariance functions Cρ (orCes ) and R ue e

i
,s s are both assumed to

decay rapidly to 0 as |ξ|→∞ and to be integrable.

3.2. Correlation Length and Conserved Quantity

An important quantity characterizing the statistics of the
stochastic field ρ (or e s) is the correlation length lc(ρ) (or
lc(e

s)), defined earlier:

ò
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x x
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r
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Integrating Equation (26) over all possible lags ξ yields the
conservation equation:

r =e l e tVar const. 29s
c

s
t

3( ( ) ( ) ) ( ) ( )

or, in terms of the density field ρ:

r r
r

=
l

t

Var
const, 30c t

3( ( ) ( ) )
( )

( )

where quantities of the form X t( ) mean that the value of
quantity X is taken at time t. These two equations are modified
versions of the conservation equation derived by Chandrasekhar
(1951a) (his Equation (17)):

ò =r
¥

C r t r dr, const.
0

2( )

They account for evolution of the average (background) density
field and depend explicitly on the correlation length. The
detailed derivation of these equations is given in Appendix B.
We note that the conserved quantity in Equation (29) has the

dimension of a mass; we will come back to this point later.

4. Numerical Test of the Evolution of the Correlation
Length in Astrophysical Conditions

To test Equation (29) in astrophysical conditions, we use the
numerical simulations presented in Federrath & Klessen
(2012, 2013) and used in JC20. These simulations model the
isothermal gravo-turbulent evolution of clouds in periodic
boxes of size L with different resolutions Nres, average density
ρ0, where turbulence is driven at fixed rms Mach numbers
with solenoidal or compressive forcing or a mixture of both.
They belong to the class of statistically homogeneous flows
presented in Section 2.2.1 where V= 0. In each simulation,
gravity is added after a gravitationless turbulence state has
developed. As soon as gravity is switched on, the variance of
the density field increases due to the condensation of structures.
As shown above, the increase of the variance of ρ is expected
to be accompanied by a decrease of the correlation length lc(ρ).
To measure this decrease we use the relation derived in JC21:

r
r

rS
S 

l

R
Var Var , 31c

⎜ ⎟⎜ ⎟
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠( ) ( )

( ) ( )

that relates the variance of the column-density field Σ to the
variance of ρ, lc(ρ) and the half size of the simulation box
R= L/2. The derivation of Equation (31) is given in
Appendix C. Equation (31) thus yields the estimate l Rĉ of
the ratio of the correlation length lc(ρ) to the half size of the
simulation box R= L/2:

r
º

r
r

S
S



l

R

l

R

Var

Var
. 32c c

( )
( )ˆ ( ) ( )( )

( )



As shown previously, had Equation (32) been an exact
equality, we would expect rµ -l R Varc

1 3ˆ ( ) (for fixed r).
Equation (32), however, is only a proxy to derive an estimate of
lc(ρ) within a factor of order unity which depends on the shape
of the ACF of the density field (see Section 2.4 and
Appendix C). Furthermore, the ACF is initially that of inertial
turbulence and evolves toward an ACF whose shape at short
lags is determined by gravity-induced dynamics. We expect the
ACF to change with time between these two regimes. Once the
dynamics in high-density regions (short scales) start to be
dominated by gravity (the regime we are interested in), we
expect the ACF at short lags, while evolving with time, to
preserve its functional form. In this regime, i.e., for

r r =Var Vart t 0( ) ( ) , we expect rµ -l R Varc
1 3ˆ ( ) (as men-

tioned above). However, as the simulations can only resolve
structures larger than D =x L Nmin res, resolution issues can
prevent the occurrence of this behavior in the simulations.
Instead, we expect values of l Rĉ to level off at some point in
the simulations.
Figure 1 displays estimated values of l Rĉ as a function of

the ratio r r =Var Vart t 0( ) ( ) (which increases with time) from
hydrodynamic simulations for various Mach number  and
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resolution Nres. As expected, the l Rĉ ratio decreases as
the variance rVar( ) increases. At high variance values
(late times), the correlation length is observed to level off at
a value that depends on the resolution Nres, corresponding to

l rD =l x2 2c Jmin max
ˆ ( ) where

l r = Dx4 , 33J max( ) ( )

with D =x L Nres the grid resolution, is the Jeans length at
density

r
p

=
D
c

G x16
, 34max

s
2

min
2

( )

with cs the sound speed, above which cloud collapsing features
are not resolved (Truelove et al. 1997). For simulations at

= 50 at the highest resolution =N 1024res , we observe that
the scaling rµ -l R Varc

1 3ˆ ( ) holds over a decade for
r r = Var Var 5t t 0( ) ( ) . In the other simulations, this scaling

law is inhibited by the leveling of lĉ (save perhaps for = 10
where it holds for half a decade). It would thus be interesting to
carry out all simulations with the same highest resolution
( =N 1024res , for example).

The initial values of l Rĉ yield =l Lĉ -
+0.056 0.013

0.01 , =l Lĉ

-
+0.037 0.006

0.009, =l Lĉ -
+0.025 0.003

0.005, and = -
+l L 0.013c 0.0018

0.0015ˆ for
= 3, 5, 10, 50, respectively. For simulations with
Î 3, 5, 10{ } , one finds that, within a factor of order unity,

l=l Lc
2

s
ˆ  , where λs is the sonic length, which is found
to be close to the average width of filamentary structures in
isothermal turbulence (Federrath 2016). This is not surprising
because lc(ρ) describes the average size of the most correlated
substructures. For the = 50 simulations, however, lĉ is
about 30 times larger than λs= L/2500. λs is not resolved in
these simulations ( =N 512res or 1024), which explains the
large discrepancy between lĉ and its expected value λs.

The above results show that Equation (32) allows a good
approximation of the actual ratio lc(ρ)/R. They also emphasize

the fact that correlated substructures are only resolved down to
the smallest Jeans length that can be achieved in the
simulations. They do not imply that structures larger than
lc(ρ) are not correlated. Such large correlated structures can
exist (e.g., large filaments) but they are less correlated than the
structures smaller than lc(ρ) (i.e., they are associated with a
lower correlation coefficient rrC Var( )). Importantly enough,
the simulations for the highest resolutions confirm that the
quantity rl eVarc

s3( ) ( ) is indeed conserved, as expected from
our theoretical analysis.

5. Astrophysical Context: Star-forming Clouds and Gravity

Observations and numerical simulations of MCs in dense
star-forming regions have reported a significant increase of the
density variance compared with the one obtained from
gravitationless isothermal turbulence (e.g., Kainulainen et al.
2006, 2009; Schneider et al. 2012, 2013 and references therein
for observations and, e.g., Kritsuk et al. 2010; Ballesteros-
Paredes et al. 2011; Cho & Kim 2011; Collins et al. 2012;
Federrath & Klessen 2013; Lee et al. 2015; Burkhart et al. 2016
for simulations). Such an increase is believed to be the
signature of gravity.

5.1. Evolution of the Correlation Length

In JC20, we showed that this increase of variance due to
gravity occurs on a short (local) timescale compared with the
the typical timescale for variation of the cloud’s global mean
density r.
This increase of the variance results in a decrease of the

product r t l ec
s 3( ) ( ) in order to meet the constraint of the

conservation equation (Equation (29)):

r =e l e tVar 2 const. 35s
c

s 3( )( ( )) ( ) ( )

Given the difference of timescales, we can assume, that, during
this phase of variance increase, the (background) average
density r m= m nH ¯ (where μ and mH= 1.66× 10−24 g denote
the mean molecular weight and atomic mass unit, respectively)
is almost constant and the conservation equation essentially
holds

=

=l e

l e

e

e

Var

Var
1. 36c

s
t

c
s

t t

s
t t

s
t

3

3
0

0( ( ))
( ( ))

( ( ))
( ( ))

( ) 

It is worth stressing that whereas, by construction, n̄ is exactly
constant in mass-conserving simulations, it is not necessarily
the case in real star-forming clouds, as it depends on the bulk
flow (see Equation (6) and, e.g., Robertson & Goldreich 2012).
Thus, the growing impact of gravity on the turbulent flow is
accompanied by a drastic decrease of the correlation length of
the density field lc(e

s)= lc(ρ).
Physically speaking, Equation (36) implies that, during the

cloud’s evolution, the distribution of matter evolves from being
concentrated in weakly correlated structures of average size

=l ec
s

t t0( ( )) to being concentrated in smaller, denser more and
more correlated regions of average size =l e l ec

s
t c

s
t t0( ( )) ( ( )) .

This picture is consistent with scenarios of star formation
where the mass concentration in the cloud evolves from large
filamentary structures to smaller, denser ones, and eventually to
small prestellar cores (André 2017; André et al. 2019). Within
the terminology of the present study, this is described as
follows: dense and short-scale tightly correlated substructures

Figure 1. Estimate of correlation length l Rĉ (Equation (32)) as a function of
ratio r r =Var Vart t 0( ) ( ) , for Mach numbers Î 3, 5, 10, 50{ } (from light
blue to blue, dark blue, and purple lines). Two lower resolutions are displayed
in gray for = 3 and = 10 in order to highlight the limitations due to the
numerical resolution (as measured by Nres). The black dotted line corresponds
to scaling rµ -l R Varc

1 3ˆ ( ) . Green horizontal dotted lines indicate the value
of ratio l r R2J max( ) for which l Rĉ levels off.
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(i.e., stellar cores) appear in larger, less correlated ones (i.e.,
filaments). The former ones correspond to objects of average
size lc(ρ)(t) whereas the latter correspond to objects of average
(radial) size lc(ρ)(t0), which corresponds to the “initial”
correlation length in early collapsing structures. Indeed, t0
corresponds to the time at which some dense and significant
regions within the cloud start to collapse and to deviate from
the global evolution (contraction or expansion) of the cloud.

It is important to emphasize that the present theoretical
framework, which is based on the hypothesis of statistical
homogeneity, does not rely on any assumption regarding the
condition or the magnitude of density deviation required for
collapse. Furthermore, this framework is able to describe
simultaneously a hierarchy of structures spanning a vast range
of sizes and densities within the cloud during its evolution.

5.2. The Average Mass of Prestellar Cores

The quantity r rt e lVar 2s
c

3( ) ( )( ( )) has the dimension of a
mass (Section 3.2) and corresponds to the average mass
contained in the most correlated structures, Mcorr:

r rµM e lVar 2 , 37s
ccorr

3( )( ( )) ( )

with a proportionality coefficient of the order unity that
depends on the geometry and where the 23 term stems from the
definition of lc(ρ) since this latter corresponds to the half size of
correlated structures. Initially, Mcorr is located within the
correlated structures embedded inside large filaments of
average width lc(ρ)(t0). As collapse proceeds, this (conserved)
amount of mass gets distributed in shorter scale, more
correlated substructures of average size lc(ρ)(t)< lc(ρ)(t0).
Eventually, these structures will become prestellar cores. Thus,
Mcorr ultimately represents the average mass that is available to
form (prestellar) cores. For a Chabrier-like core mass function
(Chabrier 2003, 2005), this average mass is close to the
characteristic mass. We calculate below an estimate of its
value under typical Milky-Way-like conditions.

Observations and theoretical models of star formation
indicate that initially, i.e., before the onset of star formation,
the variance characteristic of the PDF of density fluctuations
ressembles that of isothermal, fully developed turbulence
(Padoan & Nordlund 2002; Mac Low & Klessen 2004;
Hennebelle & Chabrier 2008; Hopkins 2012; Schneider et al.
2013; De Oliveira et al. 2014; Vázquez-Semadeni et al. 2019),
i.e.,

=e t bVar 38s
0

2( )( ) ( ) ( )

(Federrath et al. 2008; Molina et al. 2012; Beattie et al. 2021).
It remains to determine the correlation length lc(ρ)(t0). While,
in case of pure gravitationless turbulence, this latter should be
about the sonic length λs, it is not necessarily the case if gravity
initially plays a non-negligible role. A detailed determination of
the correlation length will be presented in a forthcoming paper.

Meanwhile, it is safe to take the observed average radial size
of correlated filamentary structures, ∼0.1 pc, which is of the
order of the sonic length, as an estimate of the “initial”
correlation length lc(ρ)(t0) (see, e.g., Arzoumanian et al. 2011;
Hennebelle & Falgarone 2012; Federrath 2016; Hennebelle &
Inutsuka 2019 for a more complete discussion). Under typical
Milky-Way-like conditions, this yields a characteristic

correlated mass

r r
m

r

= =

´
´-

M a e l M
a

n b l t

Var 2 1.56
1 2.0

10 cc 0.4 5 0.1 pc
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s
c

c

corr g
3 g

3 1

2
0

3

⎜ ⎟

⎛
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⎝
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⎝

⎞
⎠

⎛
⎝
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⎛
⎝
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It must be kept in mind that the last term of Equation (39),
namely the correlation length, entails a dependence upon the
cloud’s initial main properties, average density, and Mach
number ( r rºl t l n,c c0 0( )( ) ( ) [ ¯ ] ).
It must be emphasized that Mcorr is set up at the initial stages

of gravitational contraction, before gravity starts significantly
affecting the properties of turbulence (see JC20). It corresponds
to the mass contained in the most correlated regions embedded
in the initial filamentary structures generated by turbulence. It
is not necessarily the average mass of all filaments in the cloud.
Similarly, n is the initial average density of the cloud,
representative of scales large enough that the ergodic estimates
are accurate. It is not the average density in a (small-scale)
collapsed subregion.
An important property of Mcorr is that it is not expected to

vary significantly among clouds which, initially, at large scale,
meet the typical observed Larson conditions (i.e.,
~ ~h h-n L L,d  , with ηd∼ 0.7–1.0, η∼ 0.4–0.5). Indeed,

under such conditions, the quantity n 2 , thus Mcorr, remains
approximately constant. This remarkable behavior has been
advocated in a different approach, which involves a collapse
criterion (namely the virial condition), to explain the apparent
universality of the peak of the core mass function for a wide
range of stellar cluster conditions (Hennebelle &
Chabrier 2008).
As seen from Equation (39), the theory predicts that, under

MW conditions, the average mass available to form prestellar
cores, which is ultimately located in the most correlated
structures of size lc(ρ), is of the order of∼ 1Me, in agreement
with observations (André et al. 2019).

6. Conclusion

The theory presented in this Letter, based solely on mass
conservation in a statistically homogeneous medium (not
necessarily isotropic or spatially homogeneous) with non-
trivial evolution, first provides a description of the ACF and of
the evolution of the correlation length lc(ρ) of the density field
in star-forming clouds. We show that this correlation length can
be identified as the average size of the most correlated
structures (see Section 2.4). Then, the theory provides a
generalization of the transport equation derived by Chandra-
sekhar (1951a) for the ACF (Equation (26)) of density
fluctuations in a turbulent medium. It demonstrates the
occurrence of an invariant in the cloud’s evolution, which is
the average mass contained in the most correlated structures
(Equation (29)). For any initial field of density fluctuations, this
mass is conserved no matter what dominates the global
dynamics (e.g., turbulence or gravity). Comparison with
high-resolution numerical simulations (Federrath & Kles-
sen 2012, 2013) confirms the theoretical relation (Section 4).
This gives an original and robust description of the physical
process occurring in star-forming clouds. As collapse pro-
gresses within (regions of) the cloud, the variance of the
density field increases, therefore the correlation length lc(ρ)
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decreases (Section 5.1), so collapse affects more and more
correlated, shorter and shorter scales, yielding the formation of
increasingly smaller and clumpier structures. Within this
framework, dense and short-scale correlated substructures
(cores) of average size lc(ρ)(t) form in larger correlated
structures (filaments) of average size lc(ρ)(t0)∼ 0.1 pc. It is
worth stressing that the theory, which is based on statistical
homogeneity, does not constrain fluctuations around the
average to be small and is able to simultaneously describe a
hierarchy of structures spanning a large range of size and
densities in various environments. The theory shows that,
under Milky-Way-like typical conditions, the invariant average
mass contained in the most correlated structures, which will
eventually feed (prestellar) cores is of the order of ∼1 Me,
providing an appealing explanation for the universality of the
peak of the IMF in MW environments.

Appendix A
Derivation of the Transport Equation

Starting from the mass-conservation equation (Equation (1))
and multiplying it by r r¢ º ¢x( ), one obtains:

r
r

r r¢
¶
¶

+
¶
¶

¢ =
t x

v 0. A1
i

i( ) ( )

Interchanging the primed and unprimed quantities in the above
equation yields

r
r

r r
¶ ¢
¶

+
¶
¶ ¢

¢ ¢ =
t x

v 0. A2
i

i( ) ( )

Adding the two equations and taking the average, one obtains
(Chandrasekhar 1951a):

r r r r
¶
¶

- ¢ +
¶
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¢ +
¶
¶ ¢

¢ ¢ =r x x
t
R t

x
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is the correlation function.
Decomposing V into the mean velocity V and turbulent

component u (v= V+ u), we obtain:

x x x
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r
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where x = - ¢x x and where we have used Equation (6). Then,
dividing both sides by r t 2( ) and using Equation (8), we obtain:

x
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Expressing everything in terms of the logarithmic density s (see
Equation (4)), we find:

x x x
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where R ue e
i

,s s is the cross correlation function of the two fields
e s and e su i, which depends only on the lag x = - ¢x x under
the assumption of statistical homogeneity.

Appendix B
Conserved Quantity

To obtain the conserved quantity, Equation (29), one starts
by noting that

x x x x

x x x

x

x

= ¶

=-
¶
¶

-
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where the surface integral (the second term on the right-hand
side of the equation) vanishes due to the assumption on R ue e

i
,s s .

The first term on the right-hand side can be rewritten such that:

x x x x x

x x
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e e V
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The first term on the right-hand side can be turned into a
surface integral, which also vanishes due to the assumption on
Ces. We are thus left with:

x x r
= - ´



d

dt
C d

d

dt
e l e

ln
8Var , B3e

s
c

s 3s
3

⎛
⎝

⎞
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which yields:

r
= - ´

d

dt
e l e e l e

d

dt
Var Var

ln
, B4s

c
s s

c
s3 3( ( ) ( ) ) ( ( ) ( ) ) ( ) ( )

and

r =e l e tVar const. B5s
c

s
t

3( ( ) ( ) ) ( ) ( )

In principle, the integral in Equation (28) must be carried out
over all possible lags ξ and hence over the whole space 3,
which may seem conceptually problematic as we want to deal
with a cloud of finite size. Regarding the bulk flow, however,
we rely on the same line of reasoning as in statistical
mechanics: if the actual subspace of permitted lags is large
enough, it can be assimilated into the whole space 3. The
argument is the following. If Ω, the subspace of permitted lags,
is such that its volume |Ω| is l ec

s 3( ) , i.e., contains a large
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number of correlation volumes, and if Cρ (orCes ) tends to 0 as |
ξ|→∞ and is integrable, the integral over Ω can be seen as an
integral over 3.

To understand the meaning of the conserved quantity in
Equation (29) (or Equation (B5)) and the approximation
made, we now consider a finite subspace of permitted lags. Let
Ωt be the “average” volume of space describing the
cloud under study, evolving with the average velocity field
= + = + +v V x u x c ut t L t t t, V V( ) ( ) ( ) · ( ) ( ). Ωt is hence

a mass-conserving domain and, like r t( ), is allowed to evolve
with time. If Ωt possesses point symmetry, then the
subspace of permitted lags is simply Ωt,ξ= 2Ωt. This
subspace is evolving with the relative velocity field D =v v

-x vt,( ) ¢ =x t L, V( ) (t) · ξ, because distorsion can only be
generated by the relative motion (Kolmogorov 1941;
Frisch 1995). Due to the Reynolds’ transport theorem, one has:
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Assuming now that the contribution from the surface integral at
the rhs of Equation (B9) is negligible, i.e., assuming that R ue e

i
,s s

decays rapidly to 0 at large lags ξ and that Ωt (and hence Ωt,ξ) is
large enough (for example such that W l et c

s 3∣ ∣ ( ) ), we are left
with:
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Using the fact that r W = W =t M constt t( )∣ ∣ ( ) , we obtain:

r =e l e tVar const, B11s
c

s 3( ) ( ) ( ) ( )

which is Equation (B5) (or Equation (29)). These calculations
are valid for any (mass-conserving) sub-domain Ωt that is large
enough for the surface integral on the rhs of Equation (B9) to
be negligible. Equation (B11) therefore implies that the
fundamental quantity re l e tVar s

c
s 3( ) ( ) ( ) is conserved.

Appendix C
Estimate of the Correlation Length from the Ratio of

Column-density to Volume-density Variances

We give the derivation of Equation (C7). For a cubic
simulation domain of size L, projecting the density field along
one of the three principal directions of the cube leads to a
statistically homogeneous column-density field such that:
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Thus, assuming that the density field is statistically isotropic at
small scales (i.e., the ACF is isotropic at short lags), one
obtains:

òS -r
-

L C u
u

L
duVar 1 . C4

L L,
⎛
⎝

⎞
⎠

( ) (∣ ∣) ∣ ∣ ( )
[ ]



Provided the correlation length of the density field is much
smaller than the size of the box L (i. e., lc(ρ)= L), one can
approximate the integral on the rhs of Equation (C4) by the
following expression:
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where li(ρ) is the integral scale of the density field. Thus,
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where R= L/2. This is an important result because it provides
a measure of lc(ρ)/R independently of the ACF.
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