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Abstract

In rotating stars and planets, excitation of inertial waves in convective envelopes provides an important channel for
tidal dissipation, but the dissipation rate due to inertial waves depends erratically on the tidal frequency. Tidal
dissipation is significantly enhanced at some frequencies, suggesting possible resonances between the tidal forcing
and some eigenmodes. However, the nature of these resonances remains enigmatic owing to the singularity of the
eigenvalue problem of inertial waves, and the resonances are often mistakenly attributed to wave attractors in the
literature. In this Letter, we reveal that resonant tidal responses correspond to inertial modes with large-scale flows
hidden beneath localized wave beams. Strong couplings between the tidal forcing and the hidden large-scale flows
intensify the localized wave beams emanating from the critical latitudes, leading to enhanced tidal dissipation. This
study resolves a longstanding puzzle regarding the frequency dependence of tidal dissipation due to inertial waves
in convective envelopes.

Unified Astronomy Thesaurus concepts: Tidal interaction (1699); Internal waves (819)

1. Introduction

Tidal interactions play an important role in the spin-orbital
evolution of systems involving stars, planets and moons. The
problem has been studied for more than a century (e.g.,
Darwin 1880), but estimating the efficiency of tidal dissipation
in real systems remains uncertain. The tidal response is
conventionally treated as a hydrostatic deformation, known as
the equilibrium tide, which acquires a small phase lag with
respect to the tidal forcing because of dissipation (Zahn 1966,
1989). However, the equilibrium tidal response does not satisfy
the equation of motion when the tidal frequency is nonzero.
Corrections to the equilibrium tide introduce more complicated
dynamical tides, which usually involve internal waves in stars
and gaseous planets (Ogilvie 2014).

A widely studied mechanism for dynamical tides involves
internal gravity waves in radiative regions (Zahn 1975;
Savonije & Papaloizou 1983; Goldreich & Nicholson 1989;
Goodman & Dickson 1998; Terquem et al. 1998; Ahuir et al.
2021). In rotating stars and planets, inertial waves restored by
the Coriolis force can be tidally excited in convective regions
when the tidal frequency in the rotating frame is smaller than
twice the rotation frequency (Savonije & Papaloizou 1997;
Ogilvie & Lin 2004; Wu 2005a, 2005b; Ogilvie & Lin 2007;
Lai 2012; Lee 2020), providing an additional channel of tidal
dissipation. For dynamical tides, the efficiency of tidal
dissipation depends strongly on the tidal frequency, as
resonances may take place at certain frequencies, leading to
enhanced dissipation (Ogilvie 2014). Furthermore, resonance
locking with certain modes has been promoted to explain
accelerated tidal evolution in several systems (Witte &
Savonije 1999; Burkart et al. 2013; Fuller et al. 2016; Ma &
Fuller 2021; Zanazzi & Wu 2021). Therefore, it is of great
importance to understand the nature of resonant tidal responses.

The resonance with gravity modes is relatively straightforward,
although the rotational and nonlinear effects can complicate
the picture (Savonije & Papaloizou 1997; Weinberg et al. 2012).

On the other hand, tidal dissipation due to inertial waves has a
more complicated frequency dependence (Ogilvie 2009; Rieu-
tord & Valdettaro 2010), probably because of the intrinsic
singularity of the inertial wave equations (Stewartson &
Rickard 1969; Rieutord & Valdettaro 1997). In a full sphere,
smooth inertial modes do exist and analytical solutions can be
obtained (Greenspan 1968; Zhang et al. 2001; Wu 2005a),
although the tidal forcing of these modes vanishes in the case of
a uniform density sphere (Goodman & Lackner 2009; Ogilvie
2013, but see Wu (2005b) for inhomogeneous models). In a
spherical shell (i.e., convective envelope), smooth global inertial
modes do not exist except for purely toroidal modes. Numerical
calculations with a small viscosity found that localized wave
beams generated by the singularity at a critical latitude on the
inner boundary propagate into the bulk along the characteristics
of the inertial wave equations (Hollerbach & Kerswell 1995;
Rieutord & Valdettaro 1997), and can form attractors after
multiple reflections within certain frequency intervals (Rieutord
et al. 2001).
The dissipation rate of tidally excited inertial waves depends

erratically on the tidal frequency, and can vary over several
orders of magnitude between peaks and troughs (Ogilvie &
Lin 2004; Ogilvie 2009; Rieutord & Valdettaro 2010). It is also
important to note that tidal dissipation associated with inertial
waves varies over several orders of magnitude along the
evolution of stars (Mathis 2015; Bolmont & Mathis 2016;
Barker 2020). Ray dynamics have been used to explain
the complicated frequency dependence of the dissipation
rate (Rieutord & Valdettaro 2010, 2018), yet several aspects
including the resonant peaks remain unexplained. In a two-
dimensional torus model, resonant peaks correspond to attractors
or periodic orbits of rays, which can be described by the ray
dynamics (Rieutord & Valdettaro 2010). In a real spherical shell,
however, neither attractors nor periodic orbits correspond to
resonant peaks of the dissipation curves (Ogilvie 2009; Rieutord
& Valdettaro 2010; Rekier et al. 2019), though attractors were
often misinterpreted as resonant inertial waves in the literature
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(e.g., Fuller et al. 2016; Luan et al. 2018). Resonant frequencies
also depend on the sign of the tidal frequency or azimuthal
wavenumber, which cannot be explained by the ray dynamics
(Ogilvie 2009). As resonance locking with inertial waves was
also promoted to explain the rapid tidal evolution of the satellite
systems of giant planets (Lainey et al. 2020), it is critical to
understand the nature of these resonances.

In this Letter, we use a simplified model introduced in
Ogilvie (2009) to investigate resonant tidal responses in
rotating fluid bodies, relevant to dynamical tides in convective
envelopes of rotating stars and planets. We reveal that large-
scale smooth structures, which are reminiscent of global inertial
modes in a full sphere, are hidden beneath the localized wave
beams when resonances take place in a spherical shell.
Resonant interactions between the tidal forcing and these
large-scale responses intensify the localized wave beams
emanating from the critical latitudes, leading to enhanced tidal
dissipation. Our results resolve a longstanding puzzle regarding
the frequency dependence of tidal dissipation associated with
inertial waves in convective envelopes.

2. Simplified Model

We consider tidal responses in a uniformly rotating spherical
body of radius ro, which consists of a rigid core of radius ri and
an incompressible homogeneous fluid envelope. As we focus
on dynamical tides associated with inertial waves in the fluid
envelope, tidal forcing is approximated as a periodic radial flow
at the outer boundary in the rotating frame (Ogilvie 2009):

q f= w-u U Y e, , 1r n
m i t

0 ( ) ( )

where U0 is related to the tidal amplitude, q fY ,n
m ( ) is a

standard spherical harmonic, and ω is the tidal frequency in the
rotating frame. Here we use spherical coordinates (r, θ, f).
Linear tidal responses in the fluid envelope are governed by the
linearized Navier–Stokes equations in the rotating frame:

n
¶
¶
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u
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where u is the flow velocity, Ω is the rotation frequency, ẑ is
the unit vector along the rotation axis, W is the reduced
pressure including all potential terms, and ν is the kinematic
viscosity. The viscosity is measured by the Ekman number

n= WE ro
2( ), i.e., the ratio between the rotation timescale and

the global viscous timescale. We set stress-free boundary
conditions at both inner and outer boundaries.

Equations (2)–(3) subject to the boundary conditions are
solved using a pseudo-spectral method based on an expansion
of spherical harmonics on spherical surfaces and Chebyshev
collocation in the radial direction. As we consider linear
responses to a periodic forcing, the time derivative can be
expressed as ∂u/∂t=− iωu. We actually solve the boundary
value problem in the frequency domain. The detailed numerical
scheme can be found in Ogilvie (2009). By numerically solving
the problem, we calculate the time-averaged kinetic energy Ek

and dissipation rate Dk given by
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where u* denotes the complex conjugate.
We also solve the unforced eigenmodes of the system by

assuming u∝ e− iω t, where ω is a complex eigenvalue for the
unforced problem. The real part and imaginary part of ω
represent the frequency and decay rate of an eigenmode,
respectively. Using the same method as the forced problem for
the spatial discretization, we end up with a generalized
eigenvalue problem, which is solved using an iterative method
to find the least damped eigenmode around a given frequency
ω0 (Rieutord & Valdettaro 1997).

3. Results

In this Letter, we consider only the dominant tidal
component l= 2 and m= 2. For the l= 2 and m= 1
component in spin–orbit misaligned systems, the spin-over
mode (purely toroidal mode) is involved and requires special
treatment (Lin & Ogilvie 2017). We choose a moderate inner
core size ri/ro= 0.5 for the purposes of illustration. For a very
small inner core (i.e., ri= ro) or a large core (i.e., ro− ri= ro),
the problem can be treated using the full sphere model or the
shallow water model, respectively.
Figure 1 shows the kinetic energy Ek and dissipation rate Dk

as a function of the non-dimensional tidal frequency ω/Ω.
Similar curves have been shown in previous studies (Ogilvie
2009; Rieutord & Valdettaro 2010), exhibiting erratic depend-
ence on the tidal frequency. At certain frequencies (e.g.,
vertical dashed lines in Figure 1), both the tidal energy and the
dissipation are significantly enhanced, and the dissipation rate
increases on reducing the viscosity (Ekman number), suggest-
ing possible resonances with eigenmodes at these privileged
frequencies. Such a frequency dependence is reminiscent of the
excitation of inertial modes in a full sphere (e.g., Figure 3 in
Aldridge & Toomre 1969), but no regular inertial modes
generally exist in a spherical shell as we have mentioned.
Nevertheless, eigenmodes in a spherical shell can be obtained
numerically by introducing a small viscosity. A well-known
type of eigenmode in a spherical shell is the so-called attractor
mode, in which wave beams are focused toward a closed path
(Rieutord et al. 2001), but attractors do not correspond to the
resonant peaks in the dissipation curves (Ogilvie 2009;
Rieutord & Valdettaro 2010). The nature of these resonant
peaks has remained enigmatic.
In order to understand the resonant behaviors, we compare

tidally forced flows and eigenmodes at frequencies of peaks
and troughs. Figure 2 shows two examples at ω/Ω= 1.15
(corresponding to a trough) and ω/Ω= 1.4406 (corresponding
to a peak), respectively. The eigenmode is found through an
iterative method described in Rieutord & Valdettaro (1997) and
represents the least damped mode around the forcing
frequency. As the amplitude of an eigenmode is arbitrary, the
velocity amplitude |u| is normalized to have the same
maximum values as the corresponding forced flows. At
ω/Ω= 1.15, the eigenmode represents a clear wave attractor,
which is also expected from the ray dynamics (Ogilvie 2009).
The forced flow at the same frequency shows that localized
wave beams spawned from the critical latitude propagate along
the characteristics and converge toward to the attractor of the
eigenmode, but the forced flow and the eigenmode are
considerably different as one can see from Figure 2(a). By
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contrast, the forced flow and the eigenmode exhibit the
same spatial structure at a peak frequency ω/Ω= 1.4406
(Figure 2(b)), suggesting that the eigenmode is resonantly
excited by the tidal forcing at this frequency. The resonance
behavior at ω/Ω= 1.4406 is also evident in Figure 3(a), which
shows that the dissipation rate of the tidally forced flow
increases on reducing the Ekman number and scales approxi-
mately as E−1/2. The corresponding eigenmode behaves
similarly to normal modes with a damping rate that scales
approximately as E1/2. Rieutord & Valdettaro (2010) observed
similar resonance behaviors and scalings for an axisymmetric
mode at ω/Ω= 1.3196 in a spherical shell with ri/ro= 0.35,
and noted that the resonance is difficult to explain in terms of
ray dynamics.

Despite clear evidence of the resonance at ω/Ω= 1.4406,
the eigenmode features localized wave beams emanating from
the critical latitude and propagating along the characteristics in
the bulk. There should be some underlying mechanism
responsible for the resonance and for intensifying the wave
beams at the resonant frequencies. Figure 4 shows the spectra

of energy ( u 2∣ ∣ ) and enstrophy ( ´ u 2∣ ∣ ) as a function of the
spherical harmonic degree l for two eigenmodes in Figure 2.
All spectra are normalized by the corresponding amplitude at
the lowest degree l= 2 as only the relative amplitude matters
for the eigenmodes. We can see that the energy and enstrophy
spectra have almost identical shapes for the attractor mode at
ω/Ω= 1.15, suggesting that the energy and dissipation are
distributed on the same scales. However, there is a notable
scale separation of the energy and enstrophy at around l= 8 for
the resonant eigenmode at ω/Ω= 1.4406. It seems that the
energy is mainly contained in large scales but dissipation takes
place at smaller scales for this mode. In fact, l< 8 components
contribute 60% of the total energy but contain less than 7%
of the total enstrophy for the resonant eigenmode at
ω/Ω= 1.4406. This suggests that the resonant mode contains
significant large-scale flows, which may hold the key for the
resonant tidal response, though it is not obvious from
Figure 2(b).
In order to reveal the large-scale flows of the eigenmode at

ω/Ω= 1.4406, Figure 5(a) shows the radial velocity of the

Figure 1. Kinetic energy (in units of rU r0
2

0
3) and dissipation rate (in units of rWU r0

2
0
3) as a function of the non-dimensional tidal frequency ω/Ω for various Ekman

numbers.

Figure 2. Velocity amplitude |u| in the meridional plane (only a quarter is shown due to the symmetry) at (a) ω/Ω = 1.15 (corresponding to a trough) and (b)
ω/Ω = 1.4406 (corresponding to a peak). The left sections show the tidally forced flows (U0 = 1), and the right sections show the least damped eigenmodes around
the forcing frequencies. The Ekman number E = 10−8 for all cases.
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Figure 3. (a) Dissipation rate for the forced flow at the resonant peak ω/Ω = 1.4406 as a function of the Ekman number. (b) Decay rate of the least damped eigenmode
around ω/Ω = 1.4406 as a function of the Ekman number.

Figure 4. Energy and enstrophy spectra of the two eigenmodes in Figure 2 as a function of the spherical harmonic degree l. (a) ω/Ω = 1.15; (a) ω/Ω = 1.4406.

Figure 5. Radial velocity in the meridional plane of eigenmodes. (a) Eigenmode at ω/Ω = 1.4406 but including only contributions from l < 8. (b) Inviscid inertial
mode in a full sphere at ω/Ω = 1.4558 and m = 2. (c) Eigenmode at ω/Ω = 1.15 but including only contributions from l < 8.
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eigenmode but including only spherical harmonics of l< 8
(and l�m= 2) as suggested by the spectra in Figure 4(b). We
see a smooth large-scale mode after the truncation, which is
reminiscent of an inviscid inertial mode in a full sphere with
eigenfrequency ω/Ω= 1.4558 and m= 2 as shown in
Figure 5(b). For comparison, we also show the radial velocity
truncated to l< 8 for the attractor mode at ω/Ω= 1.15 in
Figure 5 (c), which just shows some local perturbations even
after the truncation, suggesting that attractor modes do not have
large-scale structure hidden beneath wave beams. This is the
underlying difference between the resonant modes and attractor
modes.

In fact, for all of the major peaks in the dissipation curves
(vertical dashed lines in Figure 1), we find eigenmodes
exhibiting large-scale smooth structures after truncation at
appropriate l as shown in Figure A1 in the Appendix. The
truncation for the large-scale flows is chosen based on the
spectra of energy and enstrophy. For each mode, we also find a
corresponding inviscid inertial mode in a full sphere with
similar structure and nearby eigenfrequency as shown in
Figure A1. We also show two modes for the radius ratios
ri/ro= 0.35 and ri/ro= 0.7 in Figure A2 in the Appendix. It
seems that resonant eigenmodes in a spherical shell with a
moderate core size retain some features of inertial modes in a
full sphere. The large-scale mode “leaks” by radiating a small-
scale wave at the critical latitude, which propagates along the
characteristics in the bulk. The picture is somewhat related to
the wave scattering process described by Goodman & Lackner
(2009), but they assumed that the large-scale flow is a plane
wave and that the scattered wave breaks nonlinearly without
subsequent reflections. We show that the large-scale wave is
associated with eigenmodes of the system and therefore can
account for the frequency dependence of tidal dissipation.

However, we should note that the large-scale structures and
the localized wave beams together form inertial modes with a
small viscosity in a spherical shell. The inviscid inertial wave
problem remains singular and cannot be solved analytically in
a shell. We separate two parts based on the spectra to illustrate
that there are large-scale structures hidden beneath localized
wave beams for the eigenmodes corresponding to resonant
peaks. One would expect strong couplings between the large-
scale tidal forcing (e.g., l=m= 2) and the eigenmodes with
hidden large-scale flows, which can intensify the flux in wave
beams emanating from the critical latitude and lead to
enhanced tidal dissipation. This resolves a longstanding
puzzle about the resonant peaks in the dissipation curves
due to inertial waves.

4. Conclusion

Using a simplified model, we have shown that resonant tidal
responses in the convective envelopes of rotating fluid bodies
can be attributed to the excitation of inertial modes, which have
large-scale structures hidden beneath localized wave beams.
The hidden large-scale structures are revealed by analyzing the
energy and enstrophy spectra of inertial modes in a spherical
shell. We also note that these global smooth structures are
reminiscent of inertial modes with similar eigenfrequencies in a
full sphere. These particular eigenmodes are fundamentally
different from the well-known attractor modes, which have
been mistakenly linked to resonant tidal responses. Strong
couplings between the tidal forcing and inertial modes with
hidden large-scale structures can explain the resonant peaks in
the dissipation curves. Our results resolve a longstanding
puzzle regarding the frequency dependence of tidal dissipation
associated with inertial waves in convective envelopes.
In this study, we use a constant density model for the

convective envelope, which is not realistic. However, it was
found that inertial modes with smooth background density
variations are similar to those with a constant density in a full
sphere (Wu 2005a). If this remains true in a spherical shell,
resonant inertial modes with hidden large-scale flows can give
rise to non-negligible gravitational perturbations considering
background density variations. This is of particular importance
for Jupiter and Saturn as resonant inertial modes in the convective
envelopes can be potentially detected by high-precision gravity
measurements (Idini & Stevenson 2021). However, this requires
detailed calculations of inertial modes with more realistic models
to quantitatively characterize possible detections.

Y.L. was supported by the B-type Strategic Priority Program
of the CAS (XDB41000000) and the pre-research project on
Civil Aerospace Technologies of CNSA (D020308) and the
Macau Foundation. This study was also supported by the Isaac
Newton Trust in Cambridge when this work started. Numerical
calculations were performed on the Taiyi cluster supported by
the Center for Computational Science and Engineering of
Southern University of Science and Technology.

Appendix

In this Appendix, we show more examples of eigenmodes
having large-scale structures hidden beneath localized wave
beams. Figure A1 shows four modes corresponding peaks in
the dissipation curves in Figure 1. Figure A2 shows two modes
with the radius ratio of 0.35 and 0.7, respectively.
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Figure A1. Eigenmodes at frequencies corresponding to several peaks in the dissipation curves. Left column: velocity amplitude |u|; Middle column: radial velocity
truncated at low degree of spherical harmonics. Right column: inviscid inertial modes in a full sphere with similar frequency and structure as in the middle column.
E = 10−8 for modes in a spherical shell.
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