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Abstract

With the rapid development of science and technology as well as the cross-integration between
the various disciplines, the nonsmooth optimization problem plays an increasingly important
role in operational research. In this paper, we use the trust region method to study nonsmooth
unconstrained optimization problems. Trust region subproblem is constructed to produce the
next iteration point by using feasible set as constraint condition. As the number of iterations
increases, the compression principle is used to control the elements in a bundle of information.
And then the subproblem is studied by Lagrangian function and penalized bundle method [1].
The optimal solution and the relevant derivative conclusion are obtained by transforming the
primal problem and dual problem into each other.
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1 Introduction

Nonsmooth optimization problem is also called non-differentiable optimization [2], because it does
not have the property of continuous differentiability, the traditional differential theory and methods
are no longer applicable. Bundle method is now recognized as one of the most efficient and promising
methods to solve the problem of nonsmooth optimization[3][4][5][6][7][8], which guarantees a certain
stability at the same time as the objective function descent. This method stores the acquired points
in a bundle of information:B = {fi, yi, si, i = 1, · · · , k}

∪
{xk}, where xk is the best objective

function value[1]. In this paper, we mainly study the trust region bundle method, which uses the
information in the black-box to construct the piecewise-linear affine model of the objective function
in the primal problem, and the regard feasible set as a constraint condition to construct the next
iteration point. With the increase of the number of iterations, we use the compression mechanism
to control the size of subproblems. Through the idea of dual space [9][10][11][12], we study the
Lagrangian function and dual problem of trust region subproblems, and describe the relationship
between the original problem and the dual problem relationship, two important conclusions are
obtained.

2 Preliminaries

In order to ensure the objective function decreases, the bundle method [1] remembers the point
where the best decrease has been made so far. As the iteration goes along, the algorithm generate
two sequences. One sequence is a sample point that defines the model, which is called the candidate
point and we denote them by {yk}. The other sequence is a sample point with an effective descent
of the objective function, which is called the stability centers and we denote them by {xk}(it is a
subsequence of {yk}). Assuming that the current stability center is {xk}. The trust region bundle
method is to find the point where the model function decrease most in the sphere centered at the
stability center {xk}, with κk as the radius of the sphere. We construct the trust region subproblem
as follows: {

min φk(y)

s.t. |y − xk|2k 6 κk,
(2.1)

where κ > 0 is the trust region radius, κk → 0, as k → ∞. The corresponding nominal decrease is
defined by δk+1 := f(xk) − φk(y

k+1). The linearization errors of f at xk is defined by (0 6)ei :=
f(xk)−fi−⟨si, xk−yi⟩, i = 1, 2, · · · k. As the number of iterations increases, the number of elements
in the bundle of information becomes more and more, we use compression mechanism to keep the
elements in the information bundle to npk. Now, we define the piecewise-linear model function as

φk(y) = f(xk) + max
i=1,··· ,npk

{−ei + ⟨si, y − xk⟩}.

For all x ∈ Rn, the norms of primal space and the corresponding dual space are denoted by
|x|2k = ⟨Mkx, x⟩ = xTMT

k x and ∥x∥2k = ⟨x,M−1
k x⟩ = xTM−1

k x, where Mk is a positive definite
matrix.
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3 Subproblem of Trust Region Bundle Method

Theorem 1 Given the parameter κk > 0, let yk+1 be the optimal solution to (2.1), Then

yk+1 = xk − 1

2β
M−1

k ŝk, where ŝk =

npk∑
i=1

ᾱis
i, (3.1)

and ᾱ = (ᾱ1, ᾱ2, · · · , ᾱnpk ) is an optimal solution to the following problem
minαi,β

1
4β

∥
∑npk

i=1 αis
i∥2k + βκk +

∑npk
i=1 αiei

subject to α ∈△k:= {z ∈ [0, 1]npk :
∑npk

i=1 zi = 1}
β ∈ R1 .

(3.2)

Proof. Use an extra variable r to write the equivalent form of problem (2.1) as follows
min r

s.t. r > f(xk)− ei + ⟨si, y − xk⟩, i = 1, 2, · · · , npk
|y − xk|2k 6 κk .

(3.3)

The corresponding Lagrangian function is, for α ∈ R
npk
+ , β ∈ R1,

L(y, r, α, β) = r +

npk∑
i=1

αi(f(x
k)− ei + ⟨sk, y − xk⟩ − r) + β(|y − xk|2k − κk) ,

that is,

L(y, r, α, β) = (1−
npk∑
i=1

αi)r +

npk∑
i=1

αi(f(x
k)− ei + ⟨sk, y − xk⟩) + β(|y − xk|2k − κk) .

In view of the strong convexity of objective function, (2.1) has the unique solution yk+1. Therefore,
there exists an optimal multiplier (ᾱ, β) related to yk+1. (yk+1, α, β) can be obtained by solving the
primal problem (3.3) or its dual problem.

min
(y,r)∈Rn×R

max
α∈R

npk,

+ β∈R1
L(y, r, α, β) ≡ max

α∈R
npk,

+ β∈R1
min

(y,r)∈Rn×R
L(y, r, α, β).

The above problem is equivalent to the problem (3.3), they have the same finite optimal value.
However, interior programming is an unconstrained minimization problem, we have 1−

∑npk
i=1 αi = 0,

So yk+1 and (ᾱ, β) are solved by primal and dual problems, respectively,

min
y∈Rn

max
α∈R

npk
+ ,β∈R1

L(y, α, β) ≡ max
α∈R

npk,

+ β∈R1
min
y∈Rn

L(y, α, β),

where

L(y, α, β) =

npk∑
i=1

αi(f(x
k)− ei + ⟨sk, y − xk⟩) + β(|y − xk|2k − κk)

= f(xk) +

npk∑
i=1

(−αiei + ⟨αis
i, y − xk⟩) + β((y − xk)TMk(y − xk)− κk).

Consider the dual problem, for each α ∈△k, β ∈ R1, the optimality conditions of y(α.β) =
argminy L(y, α, β) is ▽yL(α, y(α, β)) = 0, i.e.,

▽yL(y, α, β) =

npk∑
i=1

αis
i + 2βMk(y − xk) = 0. (3.4)
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Particularly, when α = ᾱ , y(α, β) = y(k+1), y(k+1) = xk − 1
2β

M−1
k ŝk holds. Next we prove that ᾱ

is the solution to the problem (3.2). Multiply (3.4) on both sides by M−1
k and by 1

2β

∑npk
i=1 αis

i,

0 = 2β(y(α, β)− xk) +M−1
k

npk∑
i=1

α1s
i =

npk∑
i=1

αi⟨si, y(α, β)− xk⟩+ 1

2β
∥

npk∑
i=1

αis
i∥2k.

Further more, multiply (3.4) by y(α, β)− xk,

0 = 2β|y(α, β)− xk|2k +

npk∑
i=1

αi⟨si, y(α, β)− xk⟩.

Thus, we have

0 = 2β|y(α, β)− xk|2k +

npk∑
i=1

αi⟨si, y(α, β)− xk⟩ =
npk∑
i=1

αi⟨si, y(α, β)− xk⟩+ 1

2β
∥

npk∑
i=1

αis
i∥2k. (3.5)

From (3.5) we obtain

2β|y(α, β)− xk|2k =
1

2β
∥

npk∑
i=1

αis
i∥2k. (3.6)

Using formula (3.6), further operations can be obtained

L(y(α, β), α, β) = f(xk) +

npk∑
i=1

(−αiei + ⟨αis
i, y − xk⟩) + β(|y − xk|2k − κk)

= f(xk) +
1

4β
∥

npk∑
i=1

αis
i∥2k − βκk −

npk∑
i=1

αiei + ⟨
npk∑
i=1

αis
i, y − xk⟩

= f(xk) +
1

4β
∥

npk∑
i=1

αis
i∥2k − βκk −

npk∑
i=1

αiei + ⟨sk,− 1

2β
M−1

k sk⟩

= f(xk)− (
1

4β
∥ŝk∥2k + βκk +

npk∑
i=1

αiei).

Altogether, ᾱ is the solution to

max
α∈△k,β∈R1

L(y(α, β), α, β), i.e., min
α∈△k,β∈R1

{ 1

4β
∥

npk∑
i=1

αis
i∥2k + βκk +

npk∑
i=1

αiei}.

Theorem 2 For trust region subproblem (2.1), the following conclusions hold:

(a) δk+1 = εk + 1
4β

∥ŝk∥2k + βκk, where εk :=
∑npk

i=1 ᾱiei;

(b) Set γk = εk − 1
4β

∥ŝk∥2k + βκk, if γk > 0, we have ŝk ∈ ∂γkf(x
k).

Proof. (a) Because there is no duality gap, the optimal solution of the primal problem (2.1) is
equal to the optimal solution of the dual problem. According to the nominal decrease, we have
φk(y

k+1) = f(xk)− { 1
4β

∥
∑npk

i=1 αis
i∥2k + βκk +

∑npk
i=1 αiei}, and

δk+1 =
1

4β
∥

npk∑
i=1

αis
i∥2k + βκk +

npk∑
i=1

αiei =
1

4β
∥

npk∑
i=1

αis
i∥2k + βκk + εk.
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(b) Note that f > φk, for any y ∈ Rn, f(y) > φk(y) > φk(y
k+1) + ⟨ŝk, y − yk+1⟩. Use (3.1), the

above inequality can be rewritten as

f(y) > φk(y
k+1) + ⟨ŝk, y − xk⟩ − ⟨ŝk, yk+1 − xk⟩

= f(xk) + ⟨ŝk, y − xk⟩ − (f(xk)− φk(y
k+1)− 1

2β
∥ŝk∥2k)

= f(xk) + ⟨ŝk, y − xk⟩ − (εk + βκk − 1

4β
∥ŝk∥2k)

= f(xk) + ⟨ŝk, y − xk⟩ − γk.

The conclusion ŝk ∈ ∂γkf(x
k) is obtained.

4 Conclusion

In this paper, we propose a new trust region bundle method to solve the problem of unconstrained
nonsmooth optimization problem.By using the idea of penalized bundle method, we study the
primal and dual problems of trust region subproblems respectively.
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