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Abstract 
Behavior analysis and plant expression are the answers the researcher needs to construct predictive models that 
minimize the effects of the uncertainties of field production. The objective of this study was to compare the 
simple and multiple linear regression methods and the artificial neural networks to allow the maximum security 
in the prediction of harvest in ‘Gigante’ cactus pear. The uniformity test was conducted at the Federal Institute of 
Bahia, Campus Guanambi, Bahia, Brazil, coordinates 14°13′30″ S, 42°46′53″ W and altitude of 525 m. At 930 
days after planting, we evaluated 384 basic units, in which were measured the following variables: plant height 
(PH); cladode length (CL), width (CW) and thickness (CT); cladode number (CN); total cladode area (TCA); 
cladode area (CA) and cladode yield (Y). For the comparison between the artificial neural networks (ANN) and 
regression models (single and multiple-SLR and MLR), we considered the mean prediction error (MPE), the 
mean quadratic error (MQE), the mean square of deviation (MSD) and the coefficient of determination (R2).The 
values estimated by the ANN 7-5-1 showed the best proximity to the data obtained in field conditions, followed 
by ANN 6-2-1, MLR (TCA and CT), SLR (TCA) and SLR (CN). In this way, the ANN models with the 
topologies 7-2-1 and 6-2-1, MLR with the variables total cladode area and cladode thickness and SLR with the 
isolated descriptors total cladode area and cladode number, explain 85.1; 81.5; 76.3; 74.09 and 65.87%, 
respectively, of the yield variation. The ANNs were more efficient at predicting the yield of the ‘Gigante’ cactus 
pear when compared to the simple and multiple linear regression models. 

Keywords: model, experimental, Opuntia ficus indica Mill 

1. Introduction 
The Brazilian semi-arid region, circumscribed in the Caatinga biome, presents severe limits to plant production, 
mainly due to the low contents of available water in the soil for the plants (Albuquerque et al., 2018). However, 
even in this environment, unfavorable to plant growth and development, the cactus pear has emerged as a 
strategic resource in ruminant feeding (Ochoa et al., 2018) with significant levels of biomass production (Padilha 
Junior et al., 2016). For Amania et al. (2019), this productive potential is associated with several mechanisms of 
adaptation of the crop to the adverse conditions in which the species is normally conducted. 

The agronomic performance of a crop is of paramount importance to those who are dedicated to rural 
entrepreneurship, especially in climatic conditions of high productive risk (Nalley et al., 2016). Thus, the 
analysis of the behavior and expression of the cultivated materials are the answers the researcher needs to 
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construct predictive models that minimize the effects of the productive uncertainties or the risk associated with 
the activity in the field (Guimarães et al., 2018). 

The composition of models for harvest estimation with the ‘Gigante’ cactus pear is still sporadic in scientific 
literature. Although there are studies relating morphometric, morphogenic and production components in 
different cactus pear species (Padilha Junior et al., 2016) or even studies approaching morphological and their 
reflexes on yield (Silva et al., 2014), general literature lacks information that allows a comparison between the 
predictive tools related to cladode production in a practical and precise order, with direct application in the field. 

Artificial neural networks (ANNs) stand out in predictive modeling (Fernandes et al., 2017), which is the 
supervised learning with multi-layer perceptron networks (MLP), trained with the back propagation algorithm, 
the most used in the field of prediction. The ANNs are architected in three structures, in which the predictor 
variables make up the first layer; the hidden layer relates the number of neurons to be scaled; in sequence, the 
output layer receives stimuli from the hidden layer and constructs the pattern that will be the response. With 
many applications, the use of ANNs has intensified in agricultural modeling (Aquino et al., 2016; Azevedo et al., 
2017). 

In the same sense, simple and multiple linear regression models have been extensively incorporated into 
agricultural prediction, such as in the estimation of irrigation depths (Vicente et al., 2015), reference 
evapotranspiration (Minuzzi et al., 2014), leaf area (Zeist et al., 2014) and yield (Bertolin et al., 2017). A 
comparison of these predictive models, ANNs and regressions, allows the researcher/producer to contrast the 
estimators in the field of modeling (Soares et al., 2014). With this, it is possible to identify a robust and 
consistent tool in agricultural prediction. 

The objective of this study was to compare simple and multiple linear regression models and artificial neural 
networks to allow the maximum security in harvest prediction of ‘Gigante’ cactus pear. 

2. Material and Methods  
2.1 Experimental Characterization: Soil, Climate and Experimental Delimitation 

The study was developed in the experimental field of the Baiano Federal Institute-IFBAIANO, Campus 
Guanambi, Bahia, Brazil, in a predominantly flat area, with soil classified as a Litolic Neosol, with the 
coordinates 14°13′30″ S, 42°46′5″ W and altitude of 525 m, with rainfall and average annual temperature of 
670.2 mm and 25.9 °C, respectively.  

The uniformity experiment with the ‘Gigante’ cactus pear was carried out with cladodes duly selected in the 
IFBAIANO matrix unit, being the preparation and curing of the seedlings in shaded conditions for 15 days. A 
total of 384 plants, spaced at 2.0 × 0.2 m, were designated as basic units (BUs) and circumscribed by a border 
with 116 plants, in a total area of 200 m². 

2.2 Agronomic Characteristics Evaluated 

The agronomic representation of the crop for data collection and analysis was obtained in the third production 
cycle, at 930 days after planting, at which the following predictive vegetative variables were measured: plant 
height (PH-m); cladode length (CL-cm), width (CW-cm) and thickness (CT-mm); cladode number (CN); total 
cladode area (TCA-cm2); cladode area (CA - cm2) and the yield variable to be predicted by the models-cladode 
yield (Y-t ha-1). 

2.3 Models for Harvest Prediction 

In order to estimate the yield of ‘Gigante’ cactus pear, models of multi-layer perceptron (MLP) artificial neural 
networks (ANNs) with multiple neural structures were developed to describe crop yield. The most suitable models 
for prediction had three layers, the first with seven and six input neurons, a hidden layer with five and two neurons, 
and the output layer with one neuron, which represents the estimated variable. 

The ANN models have as a characteristic the need of numerous trainings to express the prediction. Thus, to 
improve the networks, the function mlp of the RSNNS package with back propagation algorithm was applied, in 
which the synaptic weights, established during the training phase, are randomly generated in response to the 
reduction of the mean square error (MSE). 

The training stages were sequenced in: 500 trainings, with activation in the hidden layer and output with the 
logistic and linear function, respectively; and 12 combinations of network architectures with 1, 2, 3, ... 9, 10, 20 
and 30 neurons in the hidden layer, being each ANN architecture trained 100 times, selecting the best network 
by the lowest MSE value. 
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In order to optimize the prediction model with the maximum execution time efficiency and computational 
optimization, 1,000 new trainings were performed only with the ANN selected by the lower MSE, thus, avoiding 
numerous trainings for each network configuration.  

The best ANN topology was developed using the back propagation algorithm to predict yield in ‘Gigante’ cactus 
pear by means of the phenotypic descriptors cladode area (CA), cladode length (CL), cladode width (CW), 
cladode thickness (CT), cladode number (CN), plant height (PH) and total cladode area (TCA). The ANNs were 
trained with the vegetative experimental data in order to reach the highest predictive capacity of fresh matter of 
the forage crop and the greater potential of generalization of the model for other applications. 

In order to test the ANN efficiency, the phytotechnical data were divided into two groups, called training and 
validation, in the proportion of 80 and 20%, respectively. Thus, by the analysis of regression between estimated 
and observed yield in the validation sample, we evaluated the coefficient of determination (R2) of the fitted model 
and the significance of the angular coefficient of the line by the t test, considering that an angular coefficient equal 
to one express the predictive capacity of the model by the high correspondence between the predicted and observed 
values. 

In the simple and multiple regression analyzes, the models were fitted by the least squares procedure, with the 
regression models with simple effects and the multiple linear regression models with two or more predictor 
variables, respectively (Equation 1). 

yi	= β0	+	β1×1	+	β2×2	+	... + βk×k + ei                          (1) 

where, yi refers to the fresh matter of cladodes based on the yield-related variables (xi, … xk) CA, CL, CW, CT, 
CN, PH and TCA. The ei is the error associated with ith-observation, with normal and independent distribution, 
the constant β0 is the intercession point of the model and β1	+ ... + βk×k represent the coefficients.  

Based on the presented model, the stepwise method (Draper & Smith, 1981) was used to select the most relevant 
variables. In addition to this procedure, the selection criterion considered only the significant variables at the 5% 
significance level by Student’s t test. The Akaike Information Criterion-AIC-Equation 2 (Akaike, 1974) was also 
considered as an adjustment quality estimator to select simple and multiple linear regression models, defined by:  

AIC = -2 ln (Lp)	+ 2p                                (2) 
where, Lp defines the maximum likelihood function of the estimated model, and p is the number of parameters 
associated with the model. 

For the comparison between the ANNs and regression models, the mean prediction error (MPE-Equation 3), the 
mean quadratic error (MQE),the mean square of the deviations (MSD-Equation 4), the fitted coefficient of 
determination and the coefficient of determination (R²-Equation 5),  

EMPሺ%ሻ	=	 ∑ ൫Xobs	– Xpred൯	× 100/Xobs

n
n
i                              (3) 

QMD = ∑ ൫Xobs – Xpred൯2

n
n
i                                  (4) 

where, Σi
n is the sum from i to n; xobs is the fresh matter of cladode measured after harvest; xpred is the matter 

estimated by the ANN and MRL models and “n” is the number of observations.  

R2	= 
SSReg

TSS
	=	1	– 

RSS

TSS
                                  (5) 

where, 0 ≤ R2 ≤ 1.  

2.4 Statistical Analysis 

The ANN and regression models were generated using the R software (R Development Core Team, 2019). 

3. Results and Discussion 
The vegetative variables plant height and area, width, length and thickness of the cladodes, although showing 
significant coefficients, are not recommended to compose the models of yield prediction due to the low 
correlation and, consequently, limited capacity to explain the behavior and the expression of yield, as indicated 
by R² and R²a (Table 1). By the simple linear regression model, the isolated variable total area of cladodes 
allows to predict the yield with adequate values of R² and R²a, being this model also selected by the lowest 
estimate of AIC. 
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Table 1. Components of the simple linear regression model for prediction of ‘Gigante’ cactus pear yield by 
vegetative variables 

Constant Variables Coefficients AIC r R² R²a 

-21.890 TCA 252.876 4445.291 0.8608 0.7409 0.7402 
-33.2014 CN 16.2426 4551.134 0.8116 0.6587 0.6578 
-120.04 PH 362.38 4840.924 0.5235 0.274 0.2721 
-103.0273 CA 1.3324 4909.228 0.3643 0.1327 0.1304 
-349.974 CW 45.195 4915.467 0.3442 0.1185 0.1161 
-442.955 CL 25.227 4917.611 0.3369 0.1135 0.1112 
178.095 CT 9.440 4939.758 0.2468 0.06089 0.05843 

Note. TCA: total cladode area; CN: cladode number; PH: plant height; CA: area, CW: width, CL: length and CT: 
thickness of the cladodes; AIC: Akaike Information Criterion; r: correlation coefficient; R²: coefficient of 
determination; R²a: adjusted coefficient of determination. 

 

The predictive descriptors cladode number, plant height, area, width and length of cladodes were not included in 
the equation by multiple linear regression analysis, as this method only considers the significant variables. 
Soares et al. (2014) argue that the variables discarded by the method possibly exert little influence on the 
predicted variable. Consequently, for the multiple linear regression model, only the vegetative variables were 
selected for total cladode area and cladode thickness (Table 2). 

 

Table 2. Components of the simple linear regression model for prediction of ‘Gigante’ cactus pear yield by 
vegetative variables 

Constant 
Coefficients 

PH CN TCA CA CT CL CW AIC R² R²a 

-93.7883 - - 247.7903 - 5.6736 - - 4413.71 0.763 0.761 

Note. TCA: total cladode area; CN: cladode number; PH: plant height; CA: area, CW: width, CL: length and CT: 
thickness of the cladodes; AIC: Akaike Information Criterion; R²: coefficient of determination; R²a: adjusted 
coefficient of determination. 

 

The level of significance attributed to the predictor variables allows distinguishing which descriptor has the 
greatest influence on yield. Thus, the prediction studies aim to quantify the effect that one or more vegetative 
characters can cause on a response variable. In this work, the R2a for the models selected with simple linear 
regression ranged from 0.6578 to 0.7402 (Table 1). The multiple linear equation added only 2% in the 
explanatory capacity of the model, with the R2a of 0.761 (Table 2).  

Soares et al. (2014) fitted regression models with similar R2 when estimating the matter of the bunches in 
‘Tropical’ bananas. The coefficients of determination of the models presented in this study, such as those related 
to the estimation of production in other crops (Leal et al., 2015; Kaytez et al., 2015; Dornelles et al., 2018) can 
be considered of low magnitude, since the predictive descriptors explained in a limited way the performance of 
the predicted variable 

After intense training for the composition of the ANNs, two architectures with the greatest potential to predict 
cactus pear yield were determined based on the coefficient of determination, mean square error and mean square 
of the deviations. The models 7-5-1 and 6-2-1 (Table 3) were selected using the criteria of relevance and greater 
predictive capacity. The first one had all the measured variables in the input layer (CA, CL , CW, CT, CN, PH, 
TCA) and five neurons in the middle layer, whereas the second estimator did not include the phenotypic 
descriptor CA and only had two neurons in the hidden layer.  
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The combination of the values predicted by the models and the original data made it possible to obtain the R² and 
the calculation of the mean error associated with the prediction (Table 4). The highest and the lowest mean errors 
of the prediction were associated with the SLR (NC) and ANN 7-5-1 models, respectively. In a complementary 
way, Figure 3 represents the accuracy of the models studied through the behavior of the respective lines, and the 
best fit between the observed data and the estimated values were defined with ANNs (Figure 3C). Fernandes et 
al. (2017) add that the superiority of this method is due to the sensitivity in the inflection rates of the progression 
curves, which reflects the greater predictive capacity.  

For Soares et al. (2014), the prediction models with ANNs showed great potential in describing the matter of the 
bunch in ‘Tropical’ bananas, with MPE of 1.40, while multiple linear regression was fitted with MPE of 6.52. 
These results were similar to the present study, with the lowest prediction errors and the highest R² values 
associated to the ANNs. Hence, these can be considered as a useful tool to delineate the plant expression and 
behavior. 

Due to the safety and efficiency of the technique in decision making, the ANNs have stood out in several lines of 
prediction because of the generalization capacity of the trained models in up to 100%. This predictive 
architecture was selected by Campos and Garcia (2019) in the format 26-12-1 and 0.0001, referring, respectively, 
to the number of neurons in the input layer, the hidden layer, the output layer and the mean square error. 
Fernandes et al. (2017) concluded that ANN modelling, although with R² equal to 0.61, was more effective in 
estimating sugarcane yield than official surveys, anticipating the harvest forecast in three months. 

One of the main applications of ANNs is anchored in the prediction of phenomena (Campos & Garcia, 2019), a 
circumstance also related to regression models (Bertolin et al., 2017). Thus, in view of this convergence or 
functional similarity, some studies were developed with the objective of comparing the efficiency of ANN 
models with regression techniques. In the evaluations of these prediction methods in several crops such as maize 
(Leal et al., 2015), banana (Soares et al., 2014) and rice (Giordano et al., 2010), the authors demonstrated a 
higher predictive quality for ANNs in relation to the regression equations. 

In addition, other studies (Fernandes et al., 2017; Campos et al., 2017; Dornelles et al., 2018) described the 
ANNs as robust and efficient tools with a remarkable predictive capacity, in which the historical patterns of a 
given data set can be projected into refined trending lines, with a view to solving problems and providing 
responses to decision making. 

Leal et al. (2015) argue that, although the ANNs present higher computational costs, with the greater demand for 
the construction of networks and the need to be trained countless times at each validation step, the use of this 
technique, based on the clay content variables, cation exchange capacity, soil organic matter and base saturation, 
allows better adjustments to estimate grain yield in relation to regression estimators. 

Soares et al. (2013) ratified the accuracy and efficiency of the ANN computational model in estimating yield in 
‘Tropical’ bananas. Faced with the quality of the fitted model, the same authors compared ANN estimators and 
multiple linear regression for prediction of the same variable and found differences between the methods, 
similarly to the present study, with R² of 0.91 and 0.71, in this order, for the tested models (Soares et al., 2014). 

Dornelles et al. (2018) simulated models for predicting oat grain yield through artificial intelligence and 
traditional polynomial regression analyzes, identifying higher performance and predictive quality in fitting with 
the use of artificial neural networks of multiple layers. Thus, the artificial model, as it presents a smaller error 
associated to the prediction, allows us to construct strategies to optimize the agricultural resources and to make 
feasible marketing plans with greater security (Leal et al., 2015). 

Campos et al. (2017) have identified similarities in predictive efficiency between ANN models and the 
regression equations traditionally employed by forest companies. However, the models with the ANNs, similarly 
to the present study, presented higher coefficient of determination and smaller value in the square root of the 
mean error. The comparison between prediction tools in agriculture has been growing significantly, especially 
for providing the researcher/producer tools to ensure maximum efficiency in decision making (Arruda et al., 
2013; Soares et al., 2014; Leal et al., 2015; Dornelles et al., 2018). 

The development of high-efficiency models obtained from the original field conditions favors safety when 
predicting ‘Gigante’ cactus pear yield (Guimarães et al., 2018), which contributes to the success of rural 
planning, especially as a support to the producer who needs to define in advance the quantity of animals to be fed 
with the produced biomass or even the volume to be marketed (Marques et al., 2017). 

Thus, the solution of problems through artificial intelligence, using artificial neural networks, is quite significant 
and promising to substantiate decisions in agriculture (Soares et al., 2014; Dornelles et al., 2018), promoting 
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models predictive models with superior performance compared to validated conventional tools (Arruda et al., 
2013; Leal et al., 2015; Kaytez et al., 2015). 

4. Conclusions 
The ANNs allow the development of more efficient models for the prediction of ‘Gigante’ cactus pear yield in 
comparison to the simple and multiple linear regression models, using the vegetative variables cladode area, 
cladode length, cladode width, cladode thickness, cladode number, plant height and total cladode area. 
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