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Abstract

For a simple connected undirected graph G = (V,E), the Wiener index W (G) of G is defined as
half the sum of the shortest-path distances between all pairs of vertices u, v of G. The kth power
of a graph G, denoted by Gk, is a graph with the same vertex set as G such that two vertices are
adjacent in Gk if and only if their distance is at most k in G. Let Pn be a path on n vertices. In
this paper, for the graph G = Pn2Pn, we obtain a closed form expression for W (G2). In addition, a
correct closed form expression is stated for W (P 3

n). But we are unable to provide a proof for W (P 3
n)

of how such expression has arrived. This may be compared with the existing result: for a graph G
= Pn2Pn, W (G2) can be computed by an algorithm in linear time.
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1 Introduction
Let G = (V (G), E(G)) be a finite connected unweighted undirected graph without self-loops and
multiple edges. Let |V (G)| = n and |E(G)| = m denote the order and size of a graph G respectively.
A sequence (u = v1, v2, . . . , vl = v) of pairwise distinct vertices is a u − v path in G if u =
v1v2, . . . , vl−1vl = v ∈ E(G). The length of the u − v path is the number of edges on that path.
The path of order n is denoted by Pn. The distance dG(u, v) (or simply d(u, v)) between two vertices
u and v is the length of a shortest u− v path. The all − pairs shortest− lengths (APSL) problem is
to find d(u, v) for all pairs of vertices u, v ∈ V (G). The Wiener index W (G) of G is defined as

W (G) =
1

2

∑
u∈V (G)

∑
v∈V (G)

d(u, v). (1.1)

Wiener index is a distance based graph invariant which is one of the most popular topological
indices in mathematical chemistry. It is named after the chemist Harold Wiener, who first introduced it
in 1947 to study chemical properties of alkanes. It is now recognized that there are good correlations
between W (G) and physico-chemical properties of the organic compound from which G is derived.
For applications of Wiener index, see [1,2]. A related quantity is the average distance µ(G) defined
as

µ(G) =
2W (G)

n(n− 1)
.

When G represents a network, µ(G) can be viewed as a measure of the average delay of messages
to traverse between two nodes of the network.

As Nishimura et al. mentions in [3], one of the basic problems in computational biology is
the reconstruction of the phylogeny, or evolutionary history, of a set of species or genes, typically
represented as a phylogenetic tree, whose leaves are a distinct known species. The authors in [3]
views correlations between the problem of forming phylogenetic tree and the problem of forming a
tree from a graph. One such correlation between graphs and trees, or more generally between graphs
and graphs, arises in the notion of graph powers. The kth power of a graph, Gk = (V (G), E(Gk)) is
a graph with the same vertex set as G such that two vertices are adjacent in Gk if and only if their
distance is at most k in G. Thus in such applications computation of distance plays a crucial role.

The Cartesian product of two graphs G and H denoted by G2H is the graph with vertex set
V (G) × V (H). Every vertex of G2H is thus an ordered pair (u, v), where u ∈ V (G) and v ∈ V (H).
Two distinct vertices (u, v) and (u

′
, v

′
) are adjacent in G2H if either (1) u = u

′
and vv

′
∈ E(H), or

(2) v = v
′

and uu
′
∈ E(G).

As an operation of graphs, the Cartesian product is an important method in constructing very
large scale networks from several small graphs. As Xu at al. mentions in [4], the graph that is
constructed from several small graphs can contain the factor graphs (a factor graph is a bipartite
graph that expresses how a global function of many variables factors into a product of local functions)
as subgraphs which preserves some properties of the factor graphs, such as regularity, vertex-
transitivity, hamiltonicity, and so forth. Interestingly, from factor graphs we can easily compute some
important parameters of a graph such as diameter, degree and connectivity. Thus, the Cartesian
product plays an important role in the design and analysis of large scale computer systems and
interconnection networks [5]. For example, hypercube of dimension n, Qn, is the Cartesian product
of n copies of K2, where K2 is an edge.
Entringer et al. [6], obtained the closed form expressions for computing Wiener index of large classes
of trees. Among all trees of order n, the best known are W (Pn) =

(
n+1
3

)
and W (Sn) = (n−1)2, where

Pn and Sn denote the path and star of a graph of order n respectively. The authors showed that:

Theorem 1.1. Let Tn be any tree of order n that is different from Pn and Sn. ThenW (Sn) ≤W (Tn) ≤
W (Pn).

In a manner similar to the bound given in Theorem 1.1, it also holds for the kth power of a graph.
The following theorem and corollary can be found in [7].
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Theorem 1.2. Let T k
n be the kth power of any tree of order n. Then W (Sk

n) ≤W (T k
n ) ≤W (P k

n ).

Corollary 1.3. For a connected undirected graph G of order n, W (Gk) ≤W (P k
n ).

Motivated by the background of Wiener index, average distance, notion of graph powers, Cartesian
product operation, and the results above, in this paper we obtain a closed-form expression forW (G2),
where G = Pn2Pn. Subsequently, we also obtain a correct closed form expression for W (P 3

n). But
we are unable to provide a proper theoretical proof of how an expression has arrived for W (P 3

n). This
may be compared with the existing result: for a graph G = Pn2Pn, W (G2) can be computed by an
algorithm in linear time [8].

2 Main Results
We begin with the following lemma.

Lemma 2.1. Let Pn be a path on n vertices. Then

W (P k
n2P k

n ) = 2n2W (P k
n ). (2.1)

Proof. The lemma is a consequence of the following result proved in [9]. Let G and H be two
given graphs. Then

W (G2H) = | V (H) |2 W (G) + | V (G) |2 W (H).

Theorem 2.2. For a graph P k
n2P k

n of order n2, W (P k
n2P k

n ) can be computed algorithmically in time
O(n).

Proof. From (2.1), the idea is to first compute W (P k
n ) and then W (P k

n2P k
n ) = 2n2W (P k

n ). From
[7], it has been shown that W (P k

n ) =
∑n−1

j=1 d
j
k
e(n− j). Hence it follows that W (P k

n ) can be computed
in O(n).

Theorem 2.3. Let G = Pn2Pn, where Pn is a path on n vertices. Then

W (G2) =

{
1
24

(
4n5 + 3n4 − 4n3

)
if n is even,

1
24

(
4n5 + 3n4 − 4n3 − 3

)
if n is odd. (2.2)

Proof. Let H = P 2
n2P 2

n be a graph of order n2. Let the vertices of graphs G2 and H be arranged
in two dimensions of n-rows and n-columns. Also, let the vertices be numbered 1, 2, . . . , n2, where
the vertex number of ith-row and jth-column in a grid represent (i − 1)n + j for 1 ≤ i, j ≤ n. For
u ∈ V (G) and Q ⊂ V (G), let d+(u,Q) =

∑
v∈Qd(u, v). In G2, a cross edge is defined as follows: an

edge (u, v) ∈ E(G2) is a cross edge if d(u, v) = 2, and uth-row 6= vth-row, uth-column 6= vth-column.
It may be noted that since G2 is undirected, in each row of vertices (first-row to (n − 1)th-row) we
consider a cross edge (u, v) such that it is an edge connecting a vertex u to a vertex v, u < v. We
know that V (H) = V (G2) and E(H) ⊂ E(G2). So E(G2) = E(H) ∪ CE, where CE = E(G2)\E(H),
the set of cross edges in G2. Since V (H) = V (G2) and E(H) ⊂ E(G2), W (G2) can be computed
using the result of W (H) as shown below:
Let X1j = V (G2)\{1, . . . j}. We consider two cases A and B.

Case A: n is even. Consider the first-row vertices 1, 2, . . . , n of G2. Let RE1 = {(1, n+2), (2, n+1),
(2, n+ 3), (3, n+ 2), (3, n+ 4), . . . , (n− 1, 2n− 2), (n− 1, 2n), (n, 2n− 1)} be the set of cross
edges for first-row vertices of G2. From the set RE1, we can see that in G2 there is a single
cross edge that is incident on vertices 1 and n, and there are two cross edges incident on each
of the vertices 2, 3, . . . , n− 1. We now compute d+

G2(1, X11), d+
G2(i,X1i) (2 ≤ i ≤ n− 1), and

d+
G2(n,X1n) as follows:
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1. Computation of d+
G2(1, X11): Let x be the number of edges incident on vertex 1 in

H. Then there are x + 1 edges incident on vertex 1 in G2. That is, the extra edge
that is incident on vertex 1 in G2 is (1, n + 2). Thus d+

G2(1, X11) < d+H(1, X11) and
d+
G2(1, X11) can be obtained by reducing the distance

(
n
2

)2 from d+H(1, X11). This is
possible because (1, n + 2) ∈ E(G2) and hence we can reduce a unit distance to n

2

number of vertices in one row of a grid and there are n
2

such rows in a grid. That is, we
can reduce a unit distance from vertex 1 to each of the vertices given in the following
sets.
{n + 2, n + 4, n + 6, . . . , 2n − 2, 2n} ∪ {3n + 2, 3n + 4, 3n + 6, . . . , 4n − 2, 4n} ∪ . . . ∪
{(n − 1)n + 2, (n − 1)n + 4, (n − 1)n + 6, . . . , n2 − 2, n2}. It is clear that there are n

2

vertices in each set and there are n
2

such sets. Thus

d+G2(1, X11) = d+H(1, X11) −
(n

2

)2
. (2.3)

In a manner similar to d+
G2(1, X11), we compute d+

G2(n,X1n) as

d+G2(n,X1n) = d+H(n,X1n) −
(n

2

)2
. (2.4)

2. Computation of d+
G2(i,X1i) (2 ≤ i ≤ n − 1): The number of edges incident on vertex

i in G2 is x + 2, where x is the number of edges incident on vertex i in H. The extra
two edges that is incident on vertex i in G2 are the cross edges (i, n + (i − 1)) and
(i, n + (i + 1)). Thus similar to item 1, with edges (i, n + (i − 1)) and (i, n + (i + 1))

in G2 and not in H, d+
G2(i,X1i) can be obtained by reducing the distance

(
n
2

)2 from
d+H(i,X1i). Thus

d+G2(i,X1i) = d+H(i,X1i) −
(n

2

)2
. (2.5)

Now we add (2.3), (2.4) and (2.5), and let this result be De
1.

De
1 = d+G2(1, X11) + d+G2(2, X12) + . . .+ d+G2(n− 1, X1n−1) + d+G2(n,X1n)

= d+H(1, X11)−
(n

2

)2
+ d+H(2, X12)−

(n
2

)2
+ . . . + d+H(n,X1n)−

(n
2

)2
=
[
d+H(1, X11) + d+H(2, X12) + . . . + d+H(n,X1n)

]
− n

(n
2

)2
.

(2.6)

Let RE2 = {(n+ 1, 2n+ 2), (n+ 2, 2n+ 1), (n+ 2, 2n+ 3), . . . , (2n− 1, 3n− 2), (2n− 1, 3n),
(2n, 3n − 1)} be the set of cross edges for second-row vertices of G2. In a manner similar to
(2.6) with RE2 in G2, we add d+

G2(n+ 1, X1n+1), d+
G2(n+ 2, X1n+2), . . . , d+

G2(2n,X12n), and
let this result be De

2.

De
2 = d+G2(n+ 1, X1n+1) + d+G2(n+ 2, X1n+2) + . . . + d+G2(2n,X12n)

= d+H(n+ 1, X1n+1) −
(n

2
− 1
) n

2
+ d+H(n+ 2, X1n+2) −

(n
2
− 1
) n

2

+ . . . + d+H(2n,X12n) −
(n

2
− 1
) n

2

=
[
d+H(n+ 1, X1n+1) + . . . + d+H(2n,X12n)

]
− n

[(n
2
− 1
) n

2

]
.

(2.7)

Similar to (2.6) and (2.7), for an ith-row vertices of G2, where i = 4, 6, 8, . . . , n − 4, n − 2, we
can determine De

4, De
6, . . . , De

n−2. Notice that De
3 = De

2, De
5 = De

4, . . . , De
n−1 = De

n−2. Let De
n

= d+
G2((n− 1)n+ 1, X1(n−1)n+1) + d+

G2((n− 1)n+ 2, X1(n−1)n+2) + . . . + d+
G2(n2 − 2, X1n2−2)

+ dG2(n2 − 1, n2). Note that since there are no cross edges for nth-row vertices in G2, the
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distance De
n is equal to both the graphs G2 and H. Thus adding De

1, De
2, . . . , De

n−1 and De
n,

we get W (G2) as

W (G2) =
[
d+H(1, X11) + d+H(2, X12) + . . . + d+H((n− 1)n,X1(n−1)n) +De

n

]
−[

n
(n

2

)2
+ 2

(
n
(n

2
− 1
) n

2

)
+ 2

(
n
(n

2
− 2
) n

2

)
+ . . .+ 2

(
n
(n

2

))]
= W (H) − n4

8
,

(2.8)

where

W (H) =
[
d+H(1, X11) + d+H(2, X12) + . . . + d+H((n− 1)n,X1(n−1)n) +De

n

]
.

From (2.1) for k = 2, we have W (H) = 2n2W (P 2
n). In [7] it has been shown that

W (P 2
n) =

1

2

(
n3 − n

6
+ bn

2

4
c
)
. (2.9)

Thus

W (H) = n2

(
n3 − n

6
+ bn

2

4
c
)
. (2.10)

Substituting (2.10) in (2.8), we get

W (G2) = n2

(
n3 − n

6

)
+
n4

8
. (2.11)

Simplifying (2.11), we get

W (G2) =
1

24

(
4n5 + 3n4 − 4n3) . (2.12)

Case B: n is odd. First, we compute d+
G2(i,X1i) (1 ≤ i ≤ n) as follows:

In a manner similar to (2.3), when i is odd, we get

d+G2(i,X1i) = d+H(i,X1i) −
(
bn

2
c
)2
,

and when i is even, we get

d+G2(i,X1i) = d+H(i,X1i) −
(
dn

2
ebn

2
c
)
. (2.13)

Now we add d+
G2(1, X11), d+

G2(2, X12), . . . , d+
G2(n,X1n), and let this result be Do

1 .

Do
1 = d+G2(1, X11) + d+G2(2, X12) + . . .+ d+G2(n− 1, X1n−1) + d+G2(n,X1n)

= d+H(1, X11)−
(
bn

2
c
)2

+ d+H(2, X12)−
(
dn

2
ebn

2
c
)

+

d+H(3, X13)−
(
bn

2
c
)2

+ d+H(4, X14)−
(
dn

2
ebn

2
c
)

+ . . . +

d+H(n− 1, X1n−1)−
(
dn

2
ebn

2
c
)

+ d+H(n,X1n)−
(
bn

2
c
)2

=
[
d+H(1, X11) + d+H(2, X12) + . . . + d+H(n,X1n)

]
−[

dn
2
e
(
bn

2
c
)2

+ bn
2
c
(
dn

2
ebn

2
c
)]
.

(2.14)
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It may be noted that Do
2 = Do

1 . In a manner similar to (2.14) we add d+
G2(2n + 1, X12n+1),

d+
G2(2n+ 2, X12n+2), . . . , d+

G2(3n,X13n), and let this result be Do
3 .

Do
3 = d+G2(2n+ 1, X12n+1) + d+G2(2n+ 2, X12n+2) + . . . + d+G2(3n,X13n)

=
[
d+H(2n+ 1, X12n+1) + d+H(2n+ 2, X12n+2) + . . . + d+H(3n,X13n)

]
−[

dn
2
e
((
bn

2
c − 1

)
bn

2
c
)

+ bn
2
c
((
bn

2
c − 1

)
dn

2
e
)]
.

(2.15)

Similar to (2.14) and (2.15), for an ith-row (odd i) vertices (5 ≤ i ≤ n − 2) of G2, we can
determine Do

5 , Do
7 , . . . , Do

n−2. Notice that Do
4 = Do

3 , Do
6 = Do

5 , . . . , Do
n−1 = Do

n−2 and Do
n =

De
n. Thus adding Do

1 , Do
2 , . . . , Do

n−1 and Do
n, we get W (G2) as

W (G2) =
[
d+H(1, X11) + d+H(2, X12) + . . . + d+H((n− 1)n,X1(n−1)n) +Do

n

]
−

2

[
dn

2
e
(
bn

2
c
)2

+ bn
2
c
(
dn

2
ebn

2
c
)]

+

2
[
dn

2
e
((
bn

2
c − 1

)
bn

2
c
)

+ bn
2
c
((
bn

2
c − 1

)
dn

2
e
)]

+ . . .+

2
[
2dn

2
ebn

2
c
]

= W (H) − (n2 − 1)2

8
.

(2.16)

Inserting (2.10) into (2.16), we get

W (G2) = n2

(
n3 − n

6
+ bn

2

4
c
)
− (n2 − 1)2

8
. (2.17)

Simplifying (2.17), we get

W (G2) =
1

24

(
4n5 + 3n4 − 4n3 − 3

)
. (2.18)

Thus the result follows from (2.12) and (2.18).
The following two results are from [7].

Lemma 2.4. For u,v ∈ G, dGk (u, v) = d dG(u,v)
k

e.

Lemma 2.5. Let Pn be a path of order n. Then

W (P 2
n) =

1

2

(
n3 − n

6
+

⌊
n2

4

⌋)
. (2.19)

Lemma 2.6. Let Pn be a path of order n and 1 ≤ l ≤ k. Then W (P k
n ) < W (P l

n).

Proof. Since V (P l
n) = V (P k

n ) and E(P l
n) ⊂ E(P k

n ), implies diam(P l
n) > diam(P k

n ). Hence the
bound W (P l

n) > W (P k
n ) holds.

Finally, we give a closed form expression for W (P 3
n). Let Pn be a path of order n and 1 ≤ l ≤ k. Then

W (P 3
n) = W (P 2

n) −
⌈
W (P 2

n−1)

3

⌉
+ 1. (2.20)

The expression (2.20) is correct but we are unable to provide a proof of how such expression has
resulted.
Substituting (2.19) in (2.20), we get

W (P 3
n) =

1

2

(
n3 − n

6
+

⌊
n2

4

⌋)
− 1

2

⌈
1

3

(
(n− 1)3 − (n− 1)

6
+

⌊
(n− 1)2

4

⌋)⌉
+ 1. (2.21)
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Simplifying the right hand side of (2.21), we get

W (P 3
n) =


n(2n−1)(n+2)

24
−
⌈

1
6

(
(n−1)3−(n−1)

6
+
⌊

(n−1)2

4

⌋)⌉
+ 1 if n is even,

1
2

(
n3−n

6
+
⌊

n2

4

⌋)
−
⌈

(n(n−2)(2n+1))+3
72

⌉
+ 1 if n is odd.

(2.22)

3 Conclusions
Wiener index is a distance based graph invariant which is one of the most popular topological indices
in mathematical chemistry. The index has been used in the characterization of various types of
chemical properties, including alkanes, alkenes and arenes [2]. It has been correlated with a large
number of physiochemical properties, e.g. the boiling point, refractive index, surface tension and
viscosity [1].

One of the fundamental problems in computational biology is the reconstruction of the phylogeny,
or evolutionary history, of a set of species or genes, typically represented as a phylogenetic tree,
whose leaves are labeled by species and in which each internal node represents a speciation event
whereby an ancestral species gives rise to two or more child species [10]. The authors in [3] views
correlations between the problem of forming phylogenetic tree and the problem of forming a tree from
a graph. One such correlation between graphs and trees, or more generally between graphs and
graphs, arises in the notion of graph powers.

In this paper, for a graph G = Pn2Pn and for a path on n vertices Pn, we have presented closed
form expressions for computing the Wiener indices of G2 and P 3

n . It should be of interest if we can
obtain an expression for the Wiener index ofGk for k ≥ 3, or for some specific class of graphs such as
strongly chordal graphs to obtain an asymptotically faster algorithm for computing the Wiener index
of Gk.

Acknowledgment

The author would like to thank the higher authorities of B.N.M. Institute of Technology, Bengaluru,
India, for encouragement, support and funding to this article.

Competing Interests
The authors declare that no competing interests exist.

References
[1] Dobrynin AA, Entringer R, Gutman I. Wiener index of trees: Theory and applications. Acta Appl.

Math. 2001;66:211-249.
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